Филогенез (эволюционное развитие) нервной системы. Основные этапы развития нервной системы в пренатальный период

Среди беспозвоночных наиболее примитивный тип нервной системы в виде диффузной нервной сети встречается у кишечнополостных (см. рис. 1.2). Их нервная сеть представляет собой скопление мультиполярных и биполярных нейрон ов , отростки которых могут перекрещиваться, прилегать друг к другу и лишены функциональной дифференциации на аксон ы и дендрит ы . Диффузная нервная сеть не разделена на центральный и периферический отделы и может быть локализована в эктодерме и энтодерме.
Эпидермальные нервные сплетения, напоминающие нервные сети кишечнополостных, могут быть обнаружены и у более высоко организованных беспозвоночных (плоские и кольчатые черви), однако здесь они занимают подчиненное положение по отношению к ЦНС, которая выделяется как самостоятельный отдел.
...Ганглионизация нервных элементов получает дальнейшее развитие у высших беспозвоночных, кольчатых червей, моллюсков и членистоногих. У большинства кольчатых червей брюшные стволы ганглионизированы таким образом, что в каждом сегменте тела формируется по одной паре ганглиев, соединенных коннективами с другой парой, расположенной в соседнем сегменте.
...Эволюция нервной системы беспозвоночных идет не только по пути концентрации нервных элементов, но и в направлении усложнения структурных взаимоотношений в пределах ганглиев. Не случайно брюшную нервную цепочку сравнивают со спинным мозгом позвоночных животных. Как и в спинном мозгу, в ганглиях обнаруживается поверхностное расположение проводящих путей, дифференциация нейропиля на моторную, чувствительную и ассоциативные области.
...Прогрессивное развитие мозга у головоногих моллюсков и насекомых создает предпосылку для возникновения своеобразной иерархии командных систем управления поведением. Низший уровень интеграции в сегментарных ганглиях насекомых и в подглоточной массе мозга моллюсков служит основой для автономной деятельности и координации элементарных двигательных актов. В то же время мозг представляет собой следующий, более высокий уровень интеграции, где могут осуществляться межанализаторный синтез и оценка биологической значим ости информации. На основе этих процессов формируются нисходящие команды, обеспечивающие вариантность запуска нейрон ов сегментарных центров. Очевидно, взаимодействие двух уровней интеграции лежит в основе пластичности поведения высших беспозвоночных, включающего врожденные и приобретенные реакции.
...Нервная система позвоночных закладывается в виде сплошной нервной трубки, которая в процессе онто— и филогенеза дифференцируется на различные отделы и является также источником периферических симпатических, парасимпатических и метасимпатических нервных узлов. У наиболее древних хордовых (бесчерепных) головной мозг отсутствует, и нервная трубка представлена в малодифференцированном состоянии.
...В ходе дальнейшей эволюции наблюдается перемещение некоторых функций и систем интеграции из спинного мозга в головной — процесс энцефализации, который был рассмотрен выше на примере беспозвоночных животных. В период филогенетического развития от уровня бесчерепных до уровня круглоротых формируется головной мозг как надстройка над системами дистантной рецепции.
...Передний мозг круглоротых длительное время считали чисто обонятельным. Однако исследования недавнего времени показали, что обонятельные входы в передний мозг не являются единственными, а дополняются сенсорными входами других модальностей. Очевидно, уже на ранних этапах филогенеза позвоночных передний мозг начинает участвовать в переработке информации и управлении поведением. Вместе с тем энцефализация как маги ст ральное направление развития мозга не исключает эволюционных преобразований в спинном мозгу круглоротых. В отличие от бесчерепных нейрон ы кожной чувствительности выделяются из спинного мозга и концентрируются в спинномозговой ганглий. Наблюдается совершенствование проводниковой части спинного мозга. Проводящие волокна боковых столбов имеют контакты с мощной дендрит ной сетью мотонейрон ов. Формируются нисходящие связи головного мозга со спинным через мюллеровские волокна — гигантские аксон ы клеток, лежащих в среднем и продолговатом мозгу.
...Наиболее существенные в эволюционном плане изменения происходят в промежуточном мозгу амфибий. Здесь обособляется таламус (зрительный бугор), дифференцируются структурированные ядра (наружное коленчатое тело) и восходящие пути, связывающие зрительный бугор с корой (таламокортикальный путь).
В полушариях переднего мозга происходит дальнейшая дифференциация зачатков старой и древней коры. В старой коре (археокортексе) обнаруживаются звездчатые и пирамидные клетки. В промежутке между старой и древней корой появляется полоска плаща, которая является предтечей новой коры (неокортекса).
В целом развитие переднего мозга создает предпосылки для перехода от свойственной рыбам мезэнцефалоцеребреллярной системы интеграции к диэнцефалотелэнцефалъной, где ведущим отделом становится передний мозг, а таламус промежуточного мозга превращается в коллектор всех афферентных сигналов. В полной мере эта система интеграции представлена в зауропсидном типе мозга у рептилий и знаменует собой следующий этап морфофункциональной эволюции мозга.
Развитие таламокортикальной системы связей у рептилий приводит к формированию новых проводящих путей, как бы подтягивающихся к филогенетически молодым формациям мозга.
В боковых столбах спинного мозга рептилий обособляется восходящий спинно—таламический путь, который проводит к головному мозгу информацию о температурной и болевой чувствительности. Здесь же в боковых столбах формируется новый нисходящий путь — красно—ядерно—спинномозговой (Монакова). Он связывает мотонейрон ы спинного мозга с красным ядром среднего мозга, которое включено в древнюю экстрапирамидную систему двигательной регуляции. Эта многозвенная система объединяет влияние переднего мозга, мозжечка, ретикулярной формации ствола, ядер вестибулярного комплекса и координирует двигательную активность. У рептилий, как истинно наземных животных, возрастает роль зрительной и акустической информации, возникает необходимость сопоставления этой информации с обонятельной и вкусовой. В соответствии с этими биологическими изменениями в стволовой части мозга рептилий происходит целый ряд структурных изменений. В продолговатом мозгу дифференцируются слуховые ядра, помимо улиткового ядра появляется угловое, связанное со средним мозгом. В среднем мозгу двухолмие преобразуется в четверохолмие, в ростральных холмах которого находятся акустические центры.
Наблюдается дальнейшая дифференциация связей крыши среднего мозга с таламусом, который является как бы преддверия входа в кору всех восходящих сенсорных путей. В самом таламусе происходит дальнейшее обособление ядерных структур и установление между ними специализированных связей.
...У млекопитающих развитие переднего мозга сопровождалось бурным ростом новой коры, находящейся в тесной функциональной связи с таламусом промежуточного мозга. В коре закладываются эфферентные пирамидные клетки, посылающие свои длинные аксон ы к мотонейрон ам спинного мозга.
Таким образом, наряду с многозвенной экстрапирамидной системой появляются прямые пирамидные пути, которые обеспечивают непосредственный контроль над двигательными актами. Корковая регуляция движений у млекопитающих приводит к развитию филогенетически наиболее молодой части мозжечка — передней части задних долей полушарий, или неоцеребеллума. Неоцеребеллум приобретает двусторонние связи с новой корой.
Рост новой коры у млекопитающих происходит настолько интенсивно, что старая и древняя кора оттесняются в медиальном направлении к мозговой перегородке. Бурный рост коры компенсируется формированием складчатости. У наиболее низко организованных однопроходных (утконос) на поверхности полушария закладываются первые две постоянные борозды, остальная же поверхность остается гладкой (лиссэнцефалический тип коры).
Как показали нейрофизиологические исследования, мозг однопроходных и сумчатых млекопитающих лишен еще соединяющего полушария мозолистого тела и характеризуется перекрытием сенсорных проекций в новой коре. Четкая локализация моторных, зрительных и слуховых проекций здесь отсутствует.
У плацентарных, млекопитающих (насекомоядных и грызунов) отмечается развитие более четкой локализации проекционных зон в коре. Наряду с проекционными зонами в новой коре формируются ассоциативные зоны, однако границы первых и вторых могут перекрываться. Мозг насекомоядных и грызунов характеризуется наличием мозолистого тела и дальнейшим увеличением общей площади новой коры, развитием борозд и извилин (гирэнцефалический тип коры).
В процессе параллельно—адаптивн ой эволюции у хищных млекопитающих появляются теменные и лобные ассоциативные поля, ответственные за оценку биологически значим ой информации, мотивацию поведения и программирование сложных поведенческих актов. Наблюдается дальнейшее развитие складчатости новой коры.
И наконец, приматы демонстрируют наиболее высокий уровень организации коры головного мозга. Кора приматов характеризуется шестислойностью, отсутствием перекрытия ассоциативных и проекционных зон. У приматов формируются связи между фронтальными и теменными ассоциативными полями и, таким образом, возникает целостная интегративная система больших полушарий.

Сетевидная. Впервые возникает у многоклеточных животных - кишечнополостных.

Тяжевая. Характерна для низших червей.

Узловая. Характерна для кольчатых червей и членистоногих.

Трубчатая . Характерна для хордовых.

4. 1. Сетевидная, диффузная нервная система . Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединением отростчатых клеток и равномерно распределяется по всему телу, сгущаясь вокруг ро­товых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная систе­ма проводит возбуждения диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции.

2. Тяжевая. У низших червей. Нервные клетки не разбросаны по всему телу, как у гидры, а собраны в два нервных ствола. В передней части утолщаются – парный головной нервный узел, который начинает играть ведущую роль.

2. Узловая. У кольчатых червей и членистоногих. Основное достижение – сегментация, образуются цепочки нервных узлов, «обслуживающих» определенные участки тела. Увеличение размеров головного отдела.

3. Трубчатая нервная система (в позвоночных) отличается от нервной си­стемы червеобразных тем, что в позвоночных возникли скелетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие цен­тральной нервной системы, отдельные части и структуры которой формиру­ются в процессе эволюции постепенно и в определенной последовательности Нервный тяж в виде трубки, расположен на спинной стороне и заключен в позвоночный столб, а у переднего отдела нервной трубки образуются отделы головного мозга, заключенный в черепную коробку.

Централизация представляет собой процесс скопления нервных клеток, при котором отдельные нервные клетки и их ансамбли стали выполнять специфические регулятивные функции в центре и образовали центральные нервные узлы.

Цефализация – это процесс развития переднего конца нервной трубки и формирования головного мозга, связанный с тем, что нервные клетки и окончания стали специализироваться на приеме внешних раздражителей и распознавании средовых факторов. Нервные импульсы от внешних раздражителей и воздействий среды оперативно передавались в нервные узлы и центры.

В процессе саморазвития нервная система последовательно проходит критические этапы усложнения и дифференцировки, как в морфологическом, так и в функциональном отношении. Общая тенденция эволюции мозга в онтогенезе и филогенезе осуществляется по универсальной схеме: от диффузных, слабо дифференцированных форм деятельности к более специализированным, локальным формам функционирования.

6. В зависимости от структурных и функциональных особенностей иннервируемых органов выделяют соматический и вегетативный отделы нервной системы. Соматическая нервная система - часть нервной системы, регулирующая деятельность скелетной (произвольной) мускулатуры. Вегетативная нервная система - часть нервной системы, регулирующая деятельность гладкой (непроизвольной) мускулатуры внутренних органов, сосудов, кожи, мышцы сердца и желез. В свою очередь, в зависимости от анатомических и функциональных особенностей вегетативная нервная система подразделяется на два отдела: симпатический и парасимпатический.

Соматический отдел нервной системы представлен черепно-мозговыми и спинномозговыми нервами.

Вегетативный отдел нервной системы представлен парасимпатической, симпатической и метасимпатической иннервацией, каждая из которых имеет ряд особенностей.

Вегетативная нервная система состоит из вегетативных нейронов, расположенных в среднем, продолговатом и спинном мозге, а также в ганглиях на периферии. Для нее характерен двухнейронный принцип образования.

Центральную часть вегетативной нервной системы составляют первые нейроны, расположенные в среднем, продолговатом и спинном мозге.

Периферическое звено парасимпатической и симпатической иннервации представляет собой цепь из двух последовательно соединенных нейронов. Аксоны первых нейронов выходят из ЦНС и заканчиваются обязательно на вторых нейронах, объединенных в ганглии. Аксоны вторых нейронов идут к иннервируемому органу. Скорость проведения возбуждения по вегетативным нервным волокнам составляет 2,..14 м/с.

К периферической части относят и висцеральные афференты, т.е. чувствительные нервные волокна, проходящие в составе блуждающих, языкоглоточных и чревных нервов. Тела нейронов, к которым идут эти волокна, располагаются в соответствующих ганглиях названных нервов и спинномозговых узлах.

Вегетативный отдел нервной системы обеспечивает регуляцию структурной организации и деятельности внутренних органов, сосудов, потовых желез, а также трофику всех структур, включая скелетные мышцы, рецепторов и самой нервной системы.

Высшие нервные центры вегетативного отдела нервной системы находятся в гипоталамусе: в передних ядрах - центры парасимпатической иннервации, в задних ядрах - центры симпатической иннервации.


Филогенез нервной системы сводится к следующему: У самых низко организованных животных, например у амебы, еще нет ни специальных рецепторов, ни специального двигательного аппарата, ни чего-либо похожего на нервную систему. Любым участком своего тела амеба может воспринимать раздражение и реагировать на него своеобразным движением образованием выроста протоплазмы, или псевдоподии. Выпуская псевдоподию, амеба передвигается к раздражителю, например к пище. Такая регуляция называется гуморальной.

У многоклеточных организмов в процессе приспособительной эволюции возникает специализация различных частей тела. Появляются клетки, а затем и органы, приспособленные для восприятия раздражений, для движения и для функции связи и координации. Это нервная форма регуляции. По мере развития нервной системы нервная регуляция все больше подчиняет себе гуморальную, так что образуется единая нейрогуморальная регуляция, проходящая в процессе филогенеза следующие основные этапы: сетевидная нервная система, нервная узловая система, нервная трубчатая система.

Появление нервных клеток не только позволило передавать сигналы на большее расстояние, но и явилось морфологической основой для зачатков координации элементарных реакций, что приводит к образованию целостного двигательного акта.

В дальнейшем по мере эволюции животного мира происходит развитие и усовершенствование аппаратов рецепции, движения и координации. Возникают разнообразные органы чувств, приспособленные для восприятия механических, химических, температурных, световых и иных раздражителей. Появляется сложно устроенный двигательный аппарат, приспособленный, в зависимости от образа жизни животного, к плаванию, ползанию, ходьбе, прыжкам, полету и так далее. В результате сосредоточения, или централизации, разбросанных нервных клеток в компактные органы возникают центральная нервная система (ЦНС) и нервные периферические пути.

У хордовых ЦНС возникла в виде метамерно построенной нервной трубки с отходящими от нее сегментарными нервами ко всем сегментам тела, включая и аппарат движения, - туловищный мозг. У позвоночных и человека туловищный мозг становится спинным. Таким образом, появление туловищного мозга связано с усовершенствованием в первую очередь моторного "вооружения" животного.

Филогенетически спиной мозг появляется на III этапе развития нервной системы (нервная трубчатая система). В это время головного мозга еще нет, поэтому туловищный отдел имеет центры для управления всеми процессами в организме (висцеральные и соматические центры). Туловищный мозг имеет сегментарное строение, состоит из связанных между собой невромеров, в пределах, которых замыкается простейшая рефлекторная дуга. Метамерное строение спинного мозга сохраняется и у человека, чем и обуславливается наличие у него коротких рефлекторных дуг.

С появлением головного мозга (этап цефализации) в нем возникают высшие центры управления всем организмом, а спинной мозг попадает в подчиненное положение. Спинной мозг остается не только сегментарным аппаратом, а становится проводником импульсов от периферии к головному мозгу и обратно, в нем развиваются двусторонние связи с головным мозгом. Таким образом. В процессе эволюции спинного мозга образуются 2 аппарата: более старый сегментарный аппарат собственных связей спинного мозга и более новый надсегментарный аппарат двусторонних проводящих путей к головному мозгу. Именно такой принцип строения наблюдается у человека.

Решающим фактором образования туловищного мозга является приспособление к окружающей среде при помощи движения. Строение спинного мозга отражает способ передвижения животного. Так, например, у пресмыкающихся, не имеющих конечностей и передвигающихся с помощью туловища (змеи), спинной мозг развит равномерно на всем протяжении и не имеет утолщений. У животных, пользующихся конечностями, возникают два утолщения, причем, если более развиты передние конечности (крылья летающих птиц), то преобладает переднее (шейное) утолщение спинного мозга. Если более развиты задние конечности (ноги у страуса), то увеличено заднее (поясничное) утолщение; если в ходьбе участвуют и передние, и задние конечности (четвероногие млекопитающие), то одинаково развиты оба утолщения. У человека в связи с более сложной деятельностью руки как органа труда шейное утолщение спинного мозга дифференцировалось сильнее, чем поясничное.

Отмеченные факторы филогенеза играют роль в развитии спинного мозга и в онтогенезе.

Спинной мозг развивается из заднего отрезка нервной трубки: из ее вентрального отдела возникают клеточные тела двигательных нейронов и двигательные корешки, из дорсального отдела - клеточные тела вставочных нейронов и отростки чувствительных нейронов. Деление на моторную (двигательную) и сенсорную (чувствительную) области простирается на всю нервную трубку и сохраняется в стволе головного мозга.

Так как большинство органов чувств возникает на том конце тела животного, который обращен в сторону движения, т. е. вперед, то для восприятия поступающих через них внешних раздражений развивается передний конец туловищного мозга и образуется головной мозг.

Лекция №1

План лекции:

1.Филогенез нервной системы.

2. Характеристика диффузного, ганглионарного, трубчатого типов нервной системы.

3. Общая характеристика онтогенеза.

4. Онтогенез нервной системы.

5. Особенности строения нервной системы человека и его возрастная характеристика.

Строение организма человека нельзя понять без учёта его исторического развития, его эволюции, поскольку природа, а следовательно и человек, как высший продукт природы, как наиболее высокоорганизованная форма живой материи, непрерывно изменяется.

Теория эволюции живой природы по Ч. Дарвину сводится к тому, что в результате борьбы за существование происходит отбор животных, наиболее приспособленных к определённой среде. Без понимания законов эволюции мы не можем понять и законов индивидуального развития (А.Н. Северцов).

Изменения организма, происходящие при становлении его в историческом плане называется филогенезом, а при индивидуальном развитии – онтогенезом.

Эволюция структурной и функциональной организации нервной системы должна рассматриваться как с позиции совершенствования отдельных её элементов – нервных клеток, так и с позиции совершенствования общих свойств, обеспечивающих приспособительное поведение.

В развитии нервной системы принято выделять три этапа (или три типа) нервной системы: диффузный, узловой (ганглионарный) и трубчатый.

Первый этап развития нервной системы – диффузный, характерный для типа кишечнополостных (медуза). Этот тип включает разные формы – прикреплённые к субстрату (неподвижные) и ведущие свободный образ жизни.

Независимо от формы кишечнополостных тип нервной системы характеризуется как диффузный, нервные клетки которого значительно отличаются от нейронов позвоночных. В частности, в них отсутствует субстанция Нисселя, ядро не дифференцированно, количество отростков невелико, их длина незначительна. Короткоотросчатые нейроны образуют «локальные нервные» сети, скорость распространения возбуждения, по волокнам которых низкая и составляет сотые и десятые доли метра в секунду; так как требует многократного переключения в целях короткоотросчатых элементов.

В диффузной нервной системе имеются не только «локальные нервные» сети, но и сквозные проводящие пути, проводящие возбуждение на сравнительно большое расстояние, обеспечивая определённую «адресность» в проведении возбуждения. Передача возбуждения от нейронов к нейрону осуществляется не только синоптическим путём, но и через посредство протоплазматических мостиков. Нейроны слабо дифференцированы по функции. Например: у гидроидов описаны так называемые нервно-сократительные элементы, где соединена функция нервных и мышечных клеток. Таким образом, основной особенностью диффузной нервной системы является неопределённость связей, отсутствие чётко выраженных входов и выходов отростков, надёжности функционирования. Энергетически эта система мало эффективна.

Вторым этапом развития нервной системы было формирование узлового (ганглионарного) типа нервной системы, характерного для типа членистоногих (насекомые, крабы). Эта система имеет существенное отличие от диффузной: увеличивается число нейронов, возрастает разнообразие их видов, возникает большое количество вариаций нейронов, отличающихся по размеру, форме, числу отростков; происходит формирование нервных узлов, что приводит к обособлению и структурной дифференциации трёх основных видов нейронов: афферентных, ассоциативных и эффекторных, у которых все отростки получают общий выход и тело, такого ставшего униполярным, нейрона выходит из периферического узла. Множественные межнейронные контакты осуществляются в толще узла – в густой сети разветвлений отростков, называемой нейропилем. Диаметр их достигает 800-900 мкм, возрастает скорость проведения возбуждения по ним. Проходя вдоль нервной цепочки без перерыва, они обеспечивают срочные реакции, чаще всего оборонительного типа. В пределах узловой нервной системы имеются также волокна, покрытые многослойной оболочкой, напоминающей миелиновую оболочку нервных волокон позвоночных, скорость проведения в которых намного выше, чем в аксонах такого же диаметра беспозвоночных, но меньше, чем у миелинизированных аксонов большинства позвоночных.

Третий этап – нервная трубчатая система. Это высший этап структурной и функциональной эволюции нервной системы.

Все позвоночные, начиная от самых примитивных форм (ланцетных) и заканчивая человеком, имеют центральную нервную систему в виде нервной трубки, оканчивающейся в головном конце большой ганглионарной массой – головным мозгом. Центральная нервная система позвоночных состоит из спинного и головного мозга. Структурно трубчатый вид имеет только спинной мозг. Головной мозг, развиваясь как передний отдел трубки, и проходя стадии мозговых пузырей, к моменту созревания претерпевает значительные конфигурационные изменения при существенном нарастании объёма.

Спинной мозг при своей морфологической непрерывности в значительной степени сохраняет свойство сегментарности метамерности брюшной нервной цепочки узловой нервной системы.

С прогрессирующим усложнением структуры и функции головного мозга нарастает его зависимость от головного мозга, у млекопитающих дополняется кортикализацией – формированием и совершенствованием коры больших полушарий. Кора мозга обладает рядом свойств, характерных только для неё. Построенная по экранному принципу кора больших полушарий содержит не только специфические проекционные (соматические, зрительные, слуховые и т.д.), но и значительные по площади ассоциативные зоны, которые служат для корреляции различных сенсорных влияний, их интеграции с прошлым опытом для того, чтобы по моторным путям передать сформированные процессы возбуждения и торможения для поведенческих актов.

Таким образом, эволюция нервной системы идёт по линии совершенствования базовых и формирования новых прогрессивных свойств. К важнейшим процессам на этом пути относятся централизация, специализация кортикализация нервной системы. Под централизацией понимается группирование нервных элементов в морфофункциональные конгломерации в стратегических пунктах тела. Централизация, наметившаяся у кишечнополостных в виде сгущения нейронов, более ярко выражена у беспозвоночных. У них появляются нервные узлы и аппарат ортогона, формируется брюшная нервная цепочка и головные ганглии.

На этапе трубчатой нервной системы централизация получает дальнейшее развитие. Возникший осевой градиент тела – решающий момент формирования головного отдела центральной нервной системы. Централизация – это не только формирование головного, переднего отдела центральной нервной системы, но и подчинение каудальных отделов центральной нервной системы более ростральным.

На уровне млекопитающих развивается кортикализация – процесс формирования новой коры. В отличие от ганглионарных структур, кора головного мозга обладает рядом свойств, характерных только для неё. Важнейшим из этих свойств является её чрезвычайная пластичность и надёжность, как структурная, так и функциональная.

Проанализировав эволюционные закономерности морфрлогических преобразований мозга и нервно-психической деятельности И.М. Сеченов сформулировал принцип этапности развития нервной системы. По его гипотезе, в процессе саморазвития мозг последовательно проходит критические этапы усложнения и дифференцировки, как в морфологическом, так и в функциональном отношении. Общая тенденция эволюции мозга в онтогенезе и филогенезе осуществляется по универсальной схеме: от диффузных, слабодифференцированных форм деятельности к более специализированным локальным (дискретным) формам функционирования. В филогенезе, несомненно, существует тенденция, действующая в направлении совершенствования морфофункциональной организации мозга и соответственно повышения результативности его нервной (психической) деятельности. Биологическое совершенствование организмов состоит в развитии у них «способности» со всенарастающей эффективностью овладевать, «расширять» сферу окружающей среды, становясь в тоже время всё менее зависимым от неё.

Онтогенез (ontos – существо, genesis – развитие) – полный цикл индивидуального развития каждой особи, в основе которого лежит реализация наследственной информации на всех стадиях существования в определённых условиях внешней среды. Онтогенез начинается с образования зиготы и заканчивается смертью. Выделяют два типа онтогенеза: 1) непрямой (встречается в личиночной форме) и 2) прямой (встречается в неличиночной и внутриутробных формах).

Непрямой (личиночный) тип развития.

В этом случае организм в своём развитии имеет одну или несколько стадий. Личинки ведут активный образ жизни, сами добывают пищу. У личинок имеется ряд провизорных органов (временных органов), которые отсутствуют во взрослом состоянии. Процесс превращения личиночной стадии во взрослый организм называется метаморфозом (или превращением). Личинки, претерпевая превращения, могут резко отличаться от взрослой особи. У зародышей неличиностного типа развития (рыбы, птицы и т.д.) имеются провизорные органы.

Внутриутробный тип развития характерен для человека и высших млекопитающих.

Выделяют два периода онтогенеза: эмбриональный, постэмбриональный.

В эмбриональном периоде выделяют несколько стадий: зиготы, дробления, бластула, гаструляции, гистогенеза и органогенеза. Зигота – представляет собой одноклеточную стадию многоклеточного организма, образуется в результате слияния гамет. Дробление – начальный этап развития оплодотворённого яйца (зиготы), который заканчивается образованием бластулы. Следующая стадия у многоклеточных – гаструляция. Она характеризуется образованием двух или трёх слоёв тела зародыша – зародышевых листков. В процессе гаструляции различают два этапа: 1) образование эктодермы и энтодермы – двухслойный зародыш; 2) образование мезодермы (трёхслойный зародыш0. Третий (средний) листок или мезодерма образуется между наружными и внутренними листками.

У кишечнополостных гаструляция заканчивается на стадии двух зародышевых листков, у более высокоорганизованных животных и человека развиваются три зародышевых листка.

Гистогенез – процесс формирования тканей. Из эктодермы развиваются ткани нервной системы. Органогенез – процесс формирования органов. Завершается к концу эмбрионального развития.

Выделяют критические периоды эмбрионального развития – это периоды, когда зародыш наиболее чувствителен к действию повреждающих разнообразных факторов, что может нарушить его нормальное развитие. Дифференциация и усложнение тканей и органов продолжается и в постэмбриональном онтогенезе.

На основании фактов связи между процессами онтогенетического развития потомков и филогенеза предков был сформулирован биогенетический закон Мюллера-Геккеля: онтогенетическое (особенно зародышевое) развитие индивида сокращено и сжато повторяет (рекапитулирует) основные этапы развития всего ряда предковых форм – филогенеза. При этом, в значительно большей степени рекапитулируют те признаки, которые развиваются в форме «надстроек» конечных стадий развития, т.е. более близких предков; признаки отдалённых предков в большей степени редуцируются.

Закладка нервной системы человека происходит на первой неделе внутриутробного развития из эктодермы в виде медуллярной пластинки, из которой в дальнейшем формируется медуллярная трубка. Передний конец её на второй неделе внутриутробного развития утолщается. В результате роста передней части медуллярной трубки на 5-6 неделе образуются мозговые пузыри, из которых формируются известные 5 частей головного мозга: 1) два полушария, связанные мозолистым телом (telencephalon); 2) промежуточный мозг (diencephalon; 3) средний мозг;

4) мостомозжечёк (metencephalon); 5) продолговатый мозг (myencephalon), непосредственно переходящий в спинной мозг.

Различные отделы головного мозга имеют собственные закономерности сроков и темпов развития. Так как внутренний слой мозговых пузырей растёт значительно медленнее, чем корковый, то избыток роста ведёт к образованию складок и борозд. Рост и дифференцировка ядер гипоталамуса, мозжечка наиболее интенсивные на 4 и 5 месяце внутриутробного развития. Развитие коры головного мозга особенно активно лишь в последние месяцы на 6 месяце внутриутробного развития, начинает отчётливо выявляться функциональное превалирование высших отделов над бульбоспинальными.

Сложный процесс формирования головного мозга не заканчивается к моменту рождения. Головной мозг у новорожденных отличается относительно большой величиной, крупные борозды и извилины хорошо выраженные, но имеют малую высоту и глубину. Мелких борозд относительно мало, они появляются после рождения. Размеры лобной доли относительно меньше, чем у взрослого человека, а затылочный – больше. Мозжечок развит слабо, характеризуется малой толщиной, малыми размерами полушарий и поверхностными бороздами. Боковые желудочки относительно велики, растянуты.

С возрастом изменяется топографическое положение, форма, количество и размеры борозд и извилин головного мозга. Особенно интенсивно этот процесс идёт на первом году жизни ребёнка. После 5 лет развитие борозд и извилин продолжается, но гораздо медленнее. Окружность полушарий в 10-11 лет по сравнению с новорожденными увеличивается в 1,2 раза, длина борозд – в 2 раза, а площадь коры – в 3,5.

К рождению ребёнка головной мозг относительно массы тела большой. Показатели массы мозга на 1 кг массы тела составляет: у новорожденного – 1/8-1/9, у ребёнка 1 года – 1/11-1/12, у ребёнка 5 лет – 1/13-1/14, у взрослого – 1/40. Таким образом, на 1 кг массы новорожденного приходится мозгового вещества 109г, у взрослого – всего 20-25г. Масса мозга удваивается к 9 месяцам, утраивается к 3 годам, а затем с 6-7 лет скорость нарастания замедляется.

У новорожденных серое вещество плохо дифференцированно от белого. Это объясняется тем, что нервные клетки лежат не только близко друг друга по поверхности, но и располагаются в значительном количестве в пределах белого вещества. Кроме того, практически отсутвует миелиновая оболочка.

Наибольшая интенсивность деления нервных клеток головного мозга приходится на период от 10-й до 18-й недели внутриутробного развития, что модно считать критическим периодом формирования центральной нервной системы.

Позднее начинается ускоренное деление глиальных клеток. Если число нервных клеток мозга взрослого человека принять за 100%, то к моменту рождения ребёнка сформировано лишь 25% клеток, к 6-месячному возрасту их будет уже 66%, а к годовалому – 90-95%.

Процесс дифференциации нервных клеток сводится к значительному росту аксонов, их миелинизации, росту и увеличинению разветвлённости дендритов, образованию непосредственных контактов между отростками нервных клеток (так называемых межневральных синапсов). Темп развития нервной системы тем быстрее, чем меньше ребёнок. Особенно энергично он протекает в течение первых 3 месяцев жизни. Дифференцировка нервных клеток достигается к 3 годам, а к 8 годам кора головного мозга по строению похожа на кору взрослого человека.

Развитие миелиновой оболочки происходит от тела нервных клеток к периферии. Миелинизация различных путей в центральной нервной системе происходит в следующем порядке:

Вестибулоспинальный путь, являющийся наиболее примитивным, начинает обнаруживать миенилизацию с 6 месяца внутриутробного развития, руброспинальный – с 7-8 месяца, а кортикоспинальный – лишь после рождения. Наиболее интенсивно Миелинизация происходит в конце первого – начале второго года после рождения, когда ребёнок начинает ходить. В целом, Миелинизация завершается к 3-5 годам постнатального развития. Однако и в старшем детском возрасте отдельные волокна в головном мозге (особенно в коре) всё ещё остаются не покрытыми миелиновой оболочкой. Окончательная Миелинизация нервных волокон заканчивается в старшем возрасте (например, миенилизация тангенциальных путей коры больших полушарий – к 30-40 годам). Незавершённость процесса миелинизации нервных волокон определяет и относительно низкую скорость проведения возбуждения по ним.

Развитие нервных путей и окончаний во внутриутробном периоде и после рождения идёт центростремительно в цефало-каудальном направлении. О количественном развитии нервных окончаний судят по содержанию ацетилнейраминовой кислоты, накапливающейся в области сформированного нервного окончания. Биохимические данные говорят о преимущественно постнатальном формировании большинства нервных окончаний.

Твёрдая мозговая оболочка у новорожденных относительно тонкая, сращена с костями основания черепа на большой площадке. Венозные пазухи тонкостенные и относительно уже, чем у взрослых. Мягкая и паутинная оболочки мозга новорожденных исключительно тонки, субдуральное и субарахноидальное пространства уменьшенные. Цистерны, расположенные на основании мозга, напротив, относительно велики. Водопровод мозга (сильвиев водопровод) шире, чем у взрослых.

Спинной мозг в эмбриональном периоде заполняет позвоночный канал на всём его протяжении. Начиная с 3-го месяца внутриутробного периода, позвоночный столб растёт быстрее спинного мозга. Спинной мозг к рождению более развит, чем головной.У новорожденного мозговой конус находится на уровне 113-го поясничного позвонка, а у взрослого – на уровне 1-11 поясных позвонков. Шейное и поясничное утолщение спинного мозга у новорожденных не определяются и начинают контурироваться после 3 лет жизни. Длина спинного мозга у новорожденных составляет 30% длины тела, у ребёнка 1 года – 27%, а у ребёнка 3 лет – 21%. К 10-летнему возрасту, начальная длина его удваивается. У мужчин длина спинного мозга достигает в среднем 45 см, у женщин – 43 см. Отделы спинного мозга растут в длину неодинаково, больше других увеличивается грудной отдел, меньше шейный, и ещё меньше – поясничный.

Средний вес спинного мозга у новорожденных примерно 3,2 г, к году его вес удваивается, к 3-5 годам – утраивается. У взрослого спинной мозг весит около 30 г, составляя 1/1848 часть всего тела. По отношению к головному мозгу, вес спинного мозга составляет у новорожденных 1%, а у взрослых – 2%.

Таким образом, в онтогенезе различные отделы нервной системы организации человека интегрируют в единую функциональную систему, деятельность которой с возрастом совершенствуется и усложняется. Наиболее интенсивное развитие центральной нервной системы происходит у детей раннего возраста. И.П. Павлов подчёркивал, что характер высшей нервной деятельности является синтезом факторов наследственности и условий воспитания. Считается, что общее развитие умственных способностей человека на 50% происходит в течение первых 4 лет жизни, на 1/3 – между 4 и 8 годами, а на остальные 20% - между 8 и 17 годами. По приблизительным оценкам, за всю жизнь мозг среднего человека усваивает 10 15 (десять квадриллионов) бит информации, то становится понятным, что именно на ранний возраст падает наибольшая нагрузка, и именно в этот период неблагоприятные факторы могут вызывать более тяжёлые повреждения центральной нервной системы.

Возраст зародыша (недели) Развитие нервной системы
2,5 Намечается нервная бороздка
3.5 Образуется нервная трубка и нервные тяжи
Образуются 3 мозговых пузыря; формируются нервы и ганглии
Формируются 5 мозговых пузырей
Намечаются мозговые оболочки
Полушария мозга достигают большого размера
В коре появляются типичные нейроны
Формируется внутренняя структура спинного мозга
Формируются общие структурные черты головного мозга; начинается дифференцировка клеток нейроглии
Различимы доли головного мозга
20-40 Начинается миелинизация спинного мозга (20 неделя), появляются слои коры (25 недель), формируются борозды и извилины (28-30 недель), начинается миелинизация головного мозга (36-40 недель)

Таким образом, развитие головного мозга в пренатальный период происходит непрерывно и параллельно, однако характеризуется гетерохронией: скорость роста и развития филогенетически более древних образований больше, чем филогенетически более молодых образований.

Ведущую роль в росте и развитии нервной системы во внутриутробный период играют генетические факторы. Вес мозга новорожденного в среднем составляет примерно 350 г.

Морфо-функциональное созревание нервной системы продолжается в постнатальный период. Уже к концу первого года жизни вес мозга достигает 1000 г, тогда как у взрослого человека вес мозга составляет в среднем — 1400 г. Следовательно, основное прибавление массы мозга приходится на первый год жизни ребенка.

Увеличение массы мозга в постнатальный период происходит в основном за счет увеличения количества глиальных клеток. Количество нейронов не увеличивается, так как они теряют способность делиться уже в пренатальном периоде. Общая плотность нейронов (количество клеток в единице объема) уменьшается за счет роста сомы и отростков. У дендритов увеличивается количество ветвлений.

В постнатальном периоде продолжается также миелинизация нервных волокон как в центральной нервной системе, так и нервных волокон, входящих в состав периферических нервов (черепно-мозговых и спинномозговых.).

Рост спинномозговых нервов связан с развитием опорно-двигательного аппарата и формированием нервно-мышечных синапсов, а рост черепно-мозговых нервов с созреванием органов чувств.

Таким образом, если в пренатальном периоде развитие нервной системы происходит под контролем генотипа и практически не зависит от влияния внешней окружающей среды, то в постанатальном периоде все большую роль приобретают внешние стимулы. Раздражение рецепторов вызывает афферентные потоки импульсов, которые стимулируют морфо-функциональное созревание мозга.

Под влиянием афферентных импульсов на дендритах корковых нейронов образуются шипики — выросты, представляющие собой особые постсинаптические мембраны. Чем больше шипиков, тем больше синапсов и тем большее участие принимает нейрон в обработке информации.

На протяжении всего постнатального онтогенеза вплоть до пубертатного периоде также как и в пренатальный период развитие мозга происходит гетерохронно. Так, окончательное созревание спинного мозга происходит раньше, чем головного мозга. Развитие стволовых и подкорковых структур, раньше, чем корковых, рост и развитие возбудительных нейронов обгоняет рост и развитие тормозных нейронов. Это общие биологические закономерности роста и развития нервной системы.

Морфологическое созревание нервной системы коррелирует с особенностями ее функционирования на каждом этапе онтогенеза. Так, более раннее дифференцирование возбудительных нейронов по сравнению с тормозными нейронами обеспечивает преобладание мышечного тонуса сгибателей над тонусом разгибателей. Руки и ноги плода находятся в согнутом положении — это обуславливает позу, обеспечивающую минимальный объем, благодаря чему плод занимает меньшее место в матке.

Совершенствование координации движений, связанных с формированием нервных волокон, происходит на протяжении всего дошкольного и школьного периодов, что проявляется в последовательном освоении позы сидения, стояния, ходьбы, письма и т.д.

Увеличение скорости движений обуславливается в основном процессами миелинизации периферических нервных волокон и увеличения скорости проведения возбуждения нервных импульсов.

Более раннее созревание подкорковых структур по сравнению с корковыми, многие из которых входят в состав лимбической структуры, обуславливают особенности эмоционального развития детей (большая интенсивность эмоций, неумение их сдерживать связана с незрелостью коры и ее слабым тормозным влиянием).

В пожилом и старческом возрасте происходят анатомические и гистологические изменения мозга. Часто происходит атрофия коры лобной и верхней теменной долей. Борозды становятся шире, желудочки мозга увеличиваются, объем белого вещества уменьшается. Происходит утолщение мозговых оболочек.

С возрастом нейроны уменьшаются в размерах, при этом количество ядер в клетках может увеличиться. В нейронах уменьшается также содержание РНК, необходимой для синтеза белков и ферментов. Это ухудшает трофические функции нейронов. Высказывается предположение, что такие нейроны быстрее утомляются.

В старческом возрасте нарушается также кровоснабжение мозга, стенки кровеносных сосудов утолщаются и на них откладываются холестериновые бляшки (атеросклероз). Это также ухудшает деятельность нервной системы.

ЛИТЕРАТУРА

Атлас “Нервная система человека”. Сост. В.М. Асташев. М., 1997.

Блюм Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. М.: Мир, 1988.

Борзяк Э.И., Бочаров В.Я., Сапина М.Р. Анатомия человека. — М.: Медицина, 1993. Т.2. 2-е изд., перераб. и доп.

Загорская В.Н., Попова Н.П. Анатомия нервной системы. Программа курса. МОСУ, М., 1995.

Кишш-Сентаготаи. Анатомический атлас человеческого тела. — Будапешт, 1972. 45-е изд. Т. 3.

Курепина М.М., Воккен Г.Г. Анатомия человека. — М.: Просвещение, 1997. Атлас. Изд.2-е.

Крылова Н.В., Искренко И.А. Мозг и проводящие пути (Анатомия человека в схемах и рисунках). М.: Изд-во Российского университета дружбы народов, 1998.

Мозг. Пер. с англ. Под ред. Симонова П.В. — М.: Мир, 1982.

Морфология человека. Под ред. Б.А. Никитюка, В.П. Чтецова. — М.: Изд-во МГУ, 1990. С. 252-290.

Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. — Л.: Медицина, 1968. С. 573-731.

Савельев С.В. Стереоскопический атлас мозга человека. М., 1996.

Сапин М.Р., Билич Г.Л. Анатомия человека. — М.: Высшая школа, 1989.

Синельников Р.Д. Атлас анатомии человека. — М.: Медицина, 1996. 6-е изд. Т. 4.

Шаде Дж., Форд Д. Основы неврологии. — М.: Мир, 1982.

РАЗДЕЛ I. ЦИТОЛОГИЧЕСКИЕ И ГИСТОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕРВНОЙ СИСТЕМЫ 3

РАЗДЕЛ II. СТРОЕНИЕ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ. 30

РАЗДЕЛ III. ГОЛОВНОЙ МОЗГ………………………………………………………… 46

РАЗДЕЛ IV. РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ……………………………. 92

ЛИТЕРАТУРА…………………………………………………………………………………….. 102

Лицензия на издательскую деятельность:
серия ИД № 00865, дата регистрации: 25.01.2000 года

Адрес издательства: 109383, г. Москва, ул. Шоссейная, 86

Социально-технологический институт МГУС

Ткань — это совокупность клеток и межклеточного вещества, сходных по строению, происхождению и выполняемым функциям.

2 Некоторые анатомы продолговатый мозг не включают в задний мозг, а выделяют его в качестве самостоятельного отдела.

РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ В ОНТОГЕНЕЗЕ

Онтогенез, или индивидуальное развитие организма, делится на два периода: пренатальный (внутриутробный) и постнатальный (после рождения).

Первый продолжается от момента зачатия и формирования зиготы до рождения; второй – от момента рождения и до смерти.

Пренатальный период в свою очередь подразделяется на три периода: начальный, зародышевый и плодный.

Начальный (предимплантационный) период у человека охватывает первую неделю развития (с момента оплодотворения до имплантации в слизистую оболочку матки). Зародышевый (предплодный, эмбриональный) период – от начала второй недели до конца восьмой недели (с момента имплантации до завершения закладки органов).

Плодный (фетальный) период начинается с девятой недели и длится до рождения. В это время происходит усиленный рост организма.

Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й – 10-й день – новорожденные; 10-й день – 1 год – грудной возраст; 1–3 года – раннее детство; 4–7 лет – первое детство; 8–12 лет – второе детство; 13–16 лет – подростковый период; 17–21 год – юношеский возраст; 22–35 лет – первый зрелый возраст; 36–60 лет – второй зрелый возраст; 61–74 года– пожилой возраст; с 75 лет – старческий возраст, после 90 лет – долгожители.

Завершается онтогенез естественной смертью.

Пренатальный период онтогенеза начинается с момента слияния мужских и женских половых клеток и образования зиготы. Зигота последовательно делится, образуя шаровидную бластулу. На стадии бластулы идет дальнейшее дробление и образование первичной полости – бластоцеля.

Затем начинается процесс гаструляции, в результате которого происходит перемещение клеток различными способами в бластоцель, с образованием двухслойного зародыша.

Наружный слой клеток называется эктодерма , внутренний – энтодерма. Внутри образуется полость первичной кишки – гастроцель.

Это стадия гаструлы. На стадии нейрулы образуются нервная трубка , хорда , сомиты и другие эмбриональные зачатки.

Зачаток нервной системы начинает развиваться еще в конце стадии гаструлы.

Рис. 16. Закладка нервной трубки (схематичное изображение и вид на поперечном срезе):

А–А’– уровень поперечного среза; а – начальный этап погружения медуллярной пластинки и формирования нервной трубки: 1 – нервная трубка; 2 – ганглиозная пластина; 3 – сомит; б – завершение образования нервной трубки и погружение ее внутрь зародыша: 4 – эктодерма; 5 – центральный канал; 6 – белое вещество спинного мозга; 7 – серое вещество спинного мозга; 8 – закладка спинного мозга; 9 – закладка головного мозга

Клеточный материал эктодермы, расположенный на дорсальной поверхности зародыша, утолщается, образуя медуллярную пластинку (рис.

17, 2 ). Эта пластинка ограничивается с боков медуллярными валиками. Дробление клеток медуллярной пластинки (медуллобластов) и медуллярных валиков приводит к изгибанию пластинки в желоб, а затем к смыканию краев желоба и образованию медуллярной трубки (рис. 16а, 1 ). При соединении медуллярных валиков образуется ганглиозная пластина, которая затем делится на ганглиозные валики.

17. Пренатальное развитие нервной системы человека:

1 – нервный гребень; 2 – нервная пластина; 3 – нервная трубка; 4 – эктодерма; 5 – средний мозг; 6 – спинной мозг; 7 – спинномозговые нервы; 8 – глазной пузырек; 9 – передний мозг; 10 – промежуточный мозг; 11 – мост; 12 – мозжечок; 13 – конечный мозг

Одновременно происходит погружение нервной трубки внутрь зародыша (рис.

16в; 17, 3 ).

Однородные первичные клетки стенки медуллярной трубки – медуллобласты – дифференцируются на первичные нервные клетки (нейробласты) и исходные клетки нейроглии (спонгиобласты).

Клетки внутреннего, прилежащего к полости трубки, слоя медуллобластов превращаются в эпендимные, которые выстилают просвет полостей мозга. Все первичные клетки активно делятся, увеличивая толщину стенки мозговой трубки и уменьшая просвет нервного канала. Нейробласты дифференцируются на нейроны, спонгиобласты – на астроциты и олигодендроциты, эпендимные – на эпендимоциты (на этом этапе онтогенеза клетки эпендимы могут образовывать нейробласты и спонгиобласты).

При дифференцировке нейробластов отростки удлиняются и превращаются в дендриты и аксон, которые на данном этапе лишены миелиновых оболочек.

Миелинизация начинается с пятого месяца пренатального развития и полностью завершается лишь в возрасте 5–7 лет. На пятом же месяце появляются синапсы. Миелиновая оболочка формируется в пределах ЦНС олигодендроцитами, а в периферической нервной системе – Шванновскими клетками.

В процессе эмбрионального развития формируются отростки и у клеток макроглии (астроцитов и олигодендроцитов).

Клетки микроглии образуются из мезенхимы и появляются в ЦНС вместе с прорастанием в нее кровеносных сосудов.

Клетки ганглиозных валиков дифференцируются сначала в биполярные, а затем в псевдоуниполярные чувствительные нервные клетки, центральный отросток которых уходит в ЦНС, а периферический – к рецепторам других тканей и органов, образуя афферентную часть периферической соматической нервной системы.

Эфферентная часть нервной системы состоит из аксонов мотонейронов вентральных отделов нервной трубки.

В первые месяцы постнатального онтогенеза продолжается интенсивный рост аксонов и дендритов и резко возрастает количество синапсов в связи с развитием нейронных сетей.

Эмбриогенез головного мозга начинается с развития в передней (ростральной) части мозговой трубки двух первичных мозговых пузырей, возникающих в результате неравномерного роста стенок нервной трубки (архэнцефалон и дейтерэнцефалон).

Дейтерэнцефалон, как и задняя часть мозговой трубки (впоследствии спинной мозг), располагается над хордой. Архэнцефалон закладывается впереди нее. Затем в начале четвертой недели у зародыша дейтерэнцефалон делится на средний (mesencephalon ) и ромбовидный (rhombencephalon ) пузыри.

А архэнцефалон превращается на этой (трехпузырной) стадии в передний мозговой пузырь (prosencephalon ) (рис.

17, 9 ). В нижней части переднего мозга выпячиваются обонятельные лопасти (из них развиваются обонятельный эпителий носовой полости, обонятельные луковицы и тракты). Из дорсолатеральных стенок переднего мозгового пузыря выступают два глазных пузыря.

В дальнейшем из них развиваются сетчатка глаз, зрительные нервы и тракты.

На шестой неделе эмбрионального развития передний и ромбовидный пузыри делятся каждый на два и наступает пятипузырная стадия (рис. 17).

Передний пузырь – конечный мозг – разделяется продольной щелью на два полушария. Полость также делится, образуя боковые желудочки. Мозговое вещество увеличивается неравномерно, и на поверхности полушарий образуются многочисленные складки – извилины, отделенные друг от друга более или менее глубокими бороздами и щелями (рис.

18). Каждое полушарие разделяется на четыре доли, в соответствие с этим полости боковых желудочков делятся также на 4 части: центральный отдел и три рога желудочка. Из мезенхимы, окружающей мозг зародыша, развиваются оболочки мозга.

Серое вещество располагается и на периферии, образуя кору больших полушарий, и в основании полушарий, образуя подкорковые ядра.

Рис. 18. Этапы развития головного мозга человека

Задняя часть переднего пузыря остается неразделенной и называется теперь промежуточным мозгом (рис.

17, 10 ). Функционально и морфологически он связан с органом зрения. На стадии, когда границы с конечным мозгом слабо выражены, из базальной части боковых стенок образуются парные выросты – глазные пузыри (рис. 17, 8 ), которые соединяются с местом их происхождения при помощи глазных стебельков, впоследствии превращающихся в зрительные нервы. Наибольшей толщины достигают боковые стенки промежуточного мозга, которые преобразуются в зрительные бугры, или таламус.

В соответствии с этим полость III желудочка превращается в узкую сагиттальную щель. В вентральной области (гипоталамус) образуется непарное выпячивание – воронка, из нижнего конца которой происходит задняя мозговая доля гипофиза – нейрогипофиз.

Третий мозговой пузырь превращается в средний мозг (рис.

17, 5), который развивается наиболее просто и отстает в росте. Стенки его утолщаются равномерно, а полость превращается в узкий канал – Сильвиев водопровод, соединяющий III и IV желудочки.

Из дорсальной стенки развивается четверохолмие, а из вентральной – ножки среднего мозга.

Ромбовидный мозг делится на задний и добавочный. Из заднего формируется мозжечок (рис. 17, 12 ) – сначала червь мозжечка, а затем полушария, а также мост (рис. 17, 11 ). Добавочный мозг превращается в продолговатый мозг. Стенки ромбовидного мозга утолщаются – как с боков, так и на дне, только крыша остается в виде тончайшей пластинки.

Полость превращается в IV желудочек, который сообщается с Сильвиевым водопроводом и с центральным каналом спинного мозга.

В результате неравномерного развития мозговых пузырей мозговая трубка начинает изгибаться (на уровне среднего мозга – теменной прогиб, в области заднего мозга – мостовой и в месте перехода добавочного мозга в спинной – затылочный прогиб).

Теменной и затылочный прогибы обращены наружу, а мостовой – внутрь (рис. 17; 18).

Структуры головного мозга, формирующиеся из первичного мозгового пузыря: средний, задний и добавочный мозг – составляют ствол головного мозга (trùncus cere bri ). Он является ростральным продолжением спинного мозга и имеет с ним общие черты строения.

Проходящая по латеральным стенкам спинного мозга и стволового отдела головного мозга парная пограничная борозда (su lcus limitons ) делит мозговую трубку на основную (вентральную) и крыловидную (дорзальную) пластинки. Из основной пластинки формируются моторные структуры (передние рога спинного мозга, двигательные ядра черепно-мозговых нервов).

Над пограничной бороздой из крыловидной пластинки развиваются сенсорные структуры (задние рога спинного мозга, сенсорные ядра ствола мозга), в пределах самой пограничной борозды – центры вегетативной нервной системы.

Производные архэнцефалона (telence phalon и diencéphalon ) создают подкорковые структуры и кору.

Здесь нет основной пластинки (она заканчивается в среднем мозге), следовательно, и нет двигательных и вегетативных ядер.

Весь передний мозг развивается из крыловидной пластинки, поэтому в нем имеются лишь сенсорные структуры (см. рис.18).

Постнатальный онтогенез нервной системы человека начинается с момента рождения ребенка. Головной мозг новорожденного весит 300–400 г. Вскоре после рождения прекращается образование из нейробластов новых нейронов, сами нейроны не делятся. Однако к восьмому месяцу после рождения вес мозга удваивается, а к 4–5 годам утраивается.

Масса мозга растет в основном за счет увеличения количества отростков и их миелинизации. Максимального веса мозг мужчин достигает к 20–29 годам, а женщин к 15–19. После 50 лет мозг уплощается, вес его падает и в старости может уменьшиться на 100 г.

Пермский гуманитарно-технологический институт

Гуманитарный факультет

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «АНАТОМИЯ ЦНС»

на тему

«Основные этапы эволюционного развития ЦНС»

Пермь, 2007

Этапы развития центральной нервной системы

Появление многоклеточных организмов явилось первичным стимулом для дифференциации систем связи, которые обеспечивают целостность реакций организма, взаимодействие между его тканями и органами.

Это взаимодействие может осуществляться как гуморальным путем посредством поступления гормонов и продуктов метаболизма в кровь, лимфу и тканевую жидкость, так и за счет функции нервной системы, которая обеспечивает быструю передачу возбуждения, адресованного к вполне определенным мишеням.

Нервная система беспозвоночных животных

Нервная система как специализированная система интеграции на пути структурного и функционального развития проходит через несколько этапов, которые у первично- и вторичноротых животных могут характеризоваться чертами параллелизма и филогенетической пластичностью выбора.

Среди беспозвоночных наиболее примитивный тип нервной системы в виде диффузной нервной сети встречается у типа кишечнополостных.

Их нервная сеть представляет собой скопление мультиполярных и биполярных нейронов, отростки которых могут перекрещиваться, прилегать друг к другу и лишены функциональной дифференциации на аксоны и дендриты. Диффузная нервная сеть не разделена на центральный и периферический отделы и может быть локализована в эктодерме и энтодерме.

Эпидермальные нервные сплетения, напоминающие нервные сети кишечнополостных, могут быть обнаружены и у более высоко организованных беспозвоночных (плоские и кольчатые черви), однако здесь они занимают соподчиненное положение по отношению к центральной нервной системе (ЦНС), которая выделяется как самостоятельный отдел.

В качестве примера такой централизации и концентрации нервных элементов можно привести ортогональную нервную систему плоских червей.

Ортогон высших турбеллярий представляет собой упорядоченную структуру, которая состоит из ассоциативных и двигательных клеток, формирующих вместе несколько пар продольных тяжей, или стволов, соединенных большим числом поперечных и кольцевых комиссуральных стволов.

Концентрация нервных элементов сопровождается их погружением в глубь тела.

Плоские черви являются билатерально симметричными животными с четко выраженной продольной осью тела. Движение у свободноживущих форм осуществляется преимущественно в сторону головного конца, где концентрируются рецепторы, сигнализирующие о приближении источника раздражения.

К числу таких рецепторов турбеллярий относятся пигментные глазки, обонятельные ямки, статоцист, чувствительные клетки покровов, наличие которых способствует концентрации нервной ткани на переднем конце тела. Этот процесс приводит к формированию головного ганглия, который, по меткому выражению Ч.

Шеррингтона, можно рассматривать как ганглиозную надстройку над системами рецепции на расстоянии.

Ганглионизация нервных элементов получает дальнейшее развитие у высших беспозвоночных, кольчатых червей, моллюсков и членистоногих.

У большинства кольчатых червей брюшные стволы ганглионизированы таким образом, что в каждом сегменте тела формируется по одной паре ганглиев, соединенных коннективами с другой парой, расположенной в соседнем сегменте.

Ганглии одного сегмента у примитивных аннелид соединены между собой поперечными комиссурами, и это приводит к образованию лестничной нервной системы,. В более продвинутых отрядах кольчатых червей наблюдается тенденция к сближению брюшных стволов вплоть до полного слияния ганглиев правой и левой сторон и перехода от лестничной к цепочечной нервной системе. Идентичный, цепочечный тип строения нервной системы существует и у членистоногих с различной выраженностью концентрации нервных элементов, которая может осуществляться не только за счет слияния соседних ганглиев одного сегмента, но и при слиянии последовательных ганглиев различных сегментов.

Эволюция нервной системы беспозвоночных идет не только по пути концентрации нервных элементов, но и в направлении усложнения структурных взаимоотношений в пределах ганглиев.

Не случайно в современной литературе отмечается тенденция сравнивать брюшную нервную цепочку со спинным мозгом позвоночных животных. Как и в спинном мозгу, в ганглиях обнаруживается поверхностное расположение проводящих путей, дифференциация нейропиля на моторную, чувствительную и ассоциативные области.

Это сходство, являющееся примером параллелизма в эволюции тканевых структур, не исключает, однако, своеобразия анатомической организации.

Так, например, расположение туловищного мозга кольчатых червей и членистоногих на брюшной стороне тела обусловило локализацию моторного нейропиля на дорсальной стороне ганглия, а не на вентральной, как это имеет место у позвоночных животных.

Процесс ганглионизации у беспозвоночных может привести к формированию нервной системы разбросанно-узлового типа, которая встречается у моллюсков. В пределах этого многочисленного типа имеются филогенетически примитивные формы с нервной системой, сопоставимой с ортогоном плоских червей (боконервные моллюски), и продвинутые классы (головоногие моллюски), у которых слившиеся ганглии формируют дифференцированный на отделы мозг.

Прогрессивное развитие мозга у головоногих моллюсков и насекомых создает предпосылку для возникновения своеобразной иерархии командных систем управления поведением.

Низший уровень интеграции в сегментарных ганглиях насекомых и в подглоточной массе мозга моллюсков служит основой для автономной деятельности и координации элементарных двигательных актов. В то же время мозг представляет собой следующий, более высокий уровень интеграции, где могут осуществляться межанализаторный синтез и оценка биологической значимости информации.

На основе этих процессов формируются нисходящие команды, обеспечивающие вариантность запуска нейронов сегментарных центров. Очевидно, взаимодействие двух уровней интеграции лежит в основе пластичности поведения высших беспозвоночных, включающего врожденные и приобретенные реакции.

В целом, говоря об эволюции нервной системы беспозвоночных, было бы упрощением представлять ее как линейный процесс.

Факты, полученные в нейроонтогенетических исследованиях беспозвоночных, позволяют допустить множественное (полигенетическое) происхождение нервной ткани беспозвоночных. Следовательно, эволюция нервной системы беспозвоночных могла идти широким фронтом от нескольких источников с изначальным многообразием.

На ранних этапах филогенетического развития сформировался второй ствол эволюционного древа, который дал начало иглокожим и хордовым.

Основным критерием для выделения типа хордовых является наличие хорды, глоточных жаберных щелей и дорсального нервного тяжа - нервной трубки, представляющей собой производное наружного зародышевого листка - эктодермы.

Трубчатый тип нервной системы позвоночных по основным принципам организации отличен от ганглионарного или узлового типа нервной системы высших беспозвоночных.

Нервная система позвоночных животных

Нервная система позвоночных закладывается в виде сплошной нервной трубки, которая в процессе онто- и филогенеза дифференцируется на различные отделы и является также источником периферических симпатических и парасимпатических нервных узлов.

У наиболее древних хордовых (бесчерепных) головной мозг отсутствует и нервная трубка представлена в малодифференцированном состоянии.

Согласно представлениям Л.

А. Орбели, С. Херрика, А. И.

Карамяна, этот критический этап развития центральной нервной системы обозначается как спинальный. Нервная трубка современного бесчерепного (ланцетника), как и спинной мозг более высоко организованных позвоночных, имеет метамерное строение и состоит из 62-64 сегментов, в центре которых проходит спинно-мозговой канал. От каждого сегмента отходят брюшные (двигательные) и спинные (чувствительные) корешки, которые не образуют смешанных нервов, а идут в виде отдельных стволов.

В головных и хвостовых отделах нервной трубки локализованы гигантские клетки Родэ, толстые аксоны которых образуют проводниковый аппарат. С клетками Родэ связаны светочувствительные глазки Гесса, возбуждение которых вызывает отрицательный фототаксис.

В головной части нервной трубки ланцетника находятся крупные ганглиозные клетки Овсянникова, имеющие синаптические контакты с биполярными чувствительными клетками обонятельной ямки.

В последнее время в головной части нервной трубки идентифицированы нейросекреторные клетки, напоминающие гипофизарную систему высших позвоночных. Однако анализ восприятия и простых форм обучения ланцетника показывает, что на данном этапе развития ЦНС функционирует по принципу эквипотенциальности, и утверждение о специфике головного отдела нервной трубки не имеет достаточных оснований.

В ходе дальнейшей эволюции наблюдается перемещение некоторых функций и систем интеграции из спинного мозга в головной - процесс энцефализации, который был рассмотрен на примере беспозвоночных животных.

В период филогенетического развития от уровня бесчерепных до уровня круглоротых формируется головной мозг как надстройка над системами дистантной рецепции.

Исследование ЦНС современных круглоротых показывает, что их головной мозг в зачаточном состоянии содержит все основные структурные элементы.

Развитие вестибулолатеральной системы, связанной с полукружными каналами и рецепторами боковой линии, возникновение ядер блуждающего нерва и дыхательного центра создают основу для формирования заднего мозга. Задний мозг миноги включает продолговатый мозг и мозжечок в виде небольших выпячиваний нервной трубки.

Общее развитие нервной системы

Филогенез нервной системы в кратких чертах сводится к следующему. У простейших одноклеточных организмов (амеба) нервной системы еще нет, а связь с окружающей средой осуществляется при помощи жидкостей, находящихся внутри и вне организма - гуморальная (humor - жидкость), донервная форма регуляции.

В дальнейшем, когда возникает нервная система, появляется и другая форма регуляции - нервная.

По мере развития нервной системы нервная регуляция все больше подчиняет себе гуморальную, так что образуется единая нейро-гуморальная регуляция при ведущей роли нервной системы. Последняя в процессе филогенеза проходит ряд основных этапов (рис.

I этап - сетевидная нервная система. На этом этапе (кишечнополостные) нервная система, например гидры, состоит из нервных клеток, многочисленные отростки которых соединяются друг с другом в разных направлениях, образуя сеть, диффузно пронизывающую все тело животного.

При раздражении любой точки тела возбуждение разливается по всей нервной сети, и животное реагирует движением всего тела. Отражением этого этапа у человека является сетевидное строение интрамуральной нервной системы.

II этап - узловая нервная система.

На этом этапе (высшие черви) нервные клетки сближаются в отдельные скопления или группы, причем из скоплений клеточных тел получаются нервные узлы - центры, а из скоплений отростков - нервные стволы - нервы. При этом в каждой клетке число отростков уменьшается, и они получают определенное направление.

Соответственно сегментарному строению тела животного, например у кольчатого червя, в каждом сегменте имеются сегментарные нервные узлы и нервные стволы. Последние соединяют узлы в двух направлениях поперечные стволы связывают узлы данного сегмента, а продольные - узлы разных сегментов.

Благодаря этому нервные импульсы, возникающие в какой-либо точке тела, не разливаются по всему телу, а распространяются по поперечным стволам в пределах данного сегмента.

Продольные стволы связывают нервные сегменты в одно целое. На головном конце животного, который при движении вперед соприкасается с различными предметами окружающего мира, развиваются органы чувств, в связи с чем головные узлы развиваются сильнее остальных, являясь прообразом будущего головного мозга.

Отражением этого этапа является сохранение у человека примитивных черт (разбросанность на периферии узлов и микроганглиев) в строении вегетативной нервной системы.

III этап - трубчатая нервная система. На первоначальной ступени развития животных особенно большую роль играл аппарат движения, от совершенства которого зависит основное условие существования животного - питание (передвижение в поисках пищи, захватывание и поглощение ее).

У низших многоклеточных развился перистальтический способ передвижения, что связано с гладкой мускулатурой и ее местным нервным аппаратом.

На более высокой ступени перистальтический способ сменяется скелетной моторикой, т. е. передвижением с помощью системы жестких рычагов - поверх мышц (членистоногие) и внутри мышц (позвоночные).

Следствием этого явилось образование поперечнополосатой мускулатуры и центральной нервной системы, координирующей перемещение отдельных рычагов моторного скелета.

Такая центральная нервная система у хордовых (ланцетник) возникла в виде метамерно построенной нервной трубки с отходящими от нее сегментарными нервами ко всем сегментам тела, включая и аппарат движения - туловищный мозг.

У позвоночных и человека туловищный мозг становится спинным. Таким образом, появление туловищного мозга связано с усовершенствованием в первую очередь моторного вооружения животного.

Наряду с этим уже у ланцетника имеются и рецепторы (обонятельный, световой). Дальнейшее развитие нервной системы и возникновение головного мозга обусловлены преимущественно усовершенствованием рецепторного вооружения.

Так как большинство органов чувств возникает на том конце тела животного, который обращен в сторону движения, т. е. вперед, то для восприятия поступающих через них внешних раздражений развивается передний конец туловищного мозга и образуется головной мозг, что совпадает с обособлением переднего конца тела в виде головы - цефализация (cephal - голова).

К. Сепп в руководстве по нервным болезням дает упрощенную, но удобную для изучения схему филогенеза головного мозга, которую мы и приводим. Согласно этой схеме, на первом этапе развития головной мозг состоит из трех отделов: заднего, среднего и переднего, причем из этих отделов в первую очередь (у низших рыб) особенно развивается задний, или ромбовидный, мозг (rhombencephalon).

Развитие заднего мозга происходит под влиянием рецепторов акустики и статики (рецепторы VIII пары головных нервов), имеющих ведущее значение для ориентации в водной среде.

В дальнейшей эволюции задний мозг дифференцируется на продолговатый мозг, являющийся переходным отделом от спинного мозга к головному и потому называемый myelencephalon (myelos - спинной мозг, encephalon - головной), и собственно задний мозг - metencephalon, из которого развиваются мозжечок и мост.

В процессе приспособления организма к окружающей среде путем изменения обмена веществ в заднем мозгу как наиболее развитом на этом этапе отделе центральной нервной системы возникают центры управления жизненно важными процессами растительной жизни, связанными, в частности, с жаберным аппаратом (дыхание, кровообращение, пищеварение и др.).

Поэтому в продолговатом мозгу возникают ядра жаберных нервов (группа X пары - вагуса). Эти жизненно важные центры дыхания и кровообращения остаются в продолговатом мозгу человека, чем объясняется смерть, наступающая при повреждении продолговатого мозга. На II этапе (еще у рыб) под влиянием зрительного рецептора особенно развивается средний мозг, mesencephalon. На III этапе, в связи с окончательным переходом животных из водной среды в воздушную, усиленно развивается обонятельный рецептор, воспринимающий содержащиеся в воздухе химические вещества, сигнализирующие своим запахом о добыче, опасности и других жизненно важных явлениях окружающей природы.

Под влиянием обонятельного рецептора развивается передний мозг — prosencephalon, вначале имеющий характер чисто обонятельного мозга.

В дальнейшем передний мозг разрастается и дифференцируется на промежуточный - diencephalon и конечный - telencephalon.

В конечном мозгу как в высшем отделе центральной нервной системы появляются центры для всех видов чувствительности. Однако нижележащие центры не исчезают, а сохраняются, подчиняясь центрам вышележащего этажа. Следовательно, с каждым новым этапом развития головного мозга возникают новые центры, подчиняющие себе старые.

Происходит как бы передвижение функциональных центров к головному концу и одновременное подчинение филогенетически старых зачатков новым. В результате центры слуха, впервые возникшие в заднем мозгу, имеются также в среднем и переднем, центры зрения, возникшие в среднем, имеются и в переднем, а центры обоняния - только в переднем мозгу.

Под влиянием обонятельного рецептора развивается небольшая часть переднего мозга, называемая поэтому обонятельным мозгом (rhinencephalon), который покрыт корой серого вещества - старой корой (paleocortex).

Совершенствование рецепторов приводит к прогрессивном;, развитию переднего мозга, который постепенно становится органом, управляющим всем поведением животного.

Различают две формы поведения животного: инстинктивное, основанное на видовых реакциях (безусловные рефлексы), и индивидуальное, основанное на опыте индивида (условные рефлексы).

Соответственно этим двум формам поведения в конечном мозгу развиваются две группы центров серого вещества: подкорковые узы, имеющие строение ядер (ядерные центры), и кора серого вещества, имеющая строение сплошного экрана (экранные центры). При этом вначале развивается «подкорка», а затем кора. Кора возникает при переходе животного от водного к наземному образу жизни и обнаруживается отчетливо у амфибий и рептилий.

Дальнейшая эволюция нервной системы характеризуется тем, что кора головного мозга все более и более подчиняет себе функции всех нижележащих центров, происходит постепенная кортиколизация функций.

Пневматоз желудка

Необходимой формацией для осуществления высшей нервной деятельности является новая кора, расположенная на поверхности полушарий и приобретающая в процессе филогенеза шестислойное строение.

Благодаря усиленному развитию новой коры конечный мозг у высших позвоночных превосходит все остальные отделы головного мозга, покрывая их, как плащом (pallium). Развивающийся новый мозг (neencephalon) оттесняет в глубину старый мозг (обонятельный), который как бы свертывается в виде аммонова рога (cornu Ammoni или pes hyppocampi), остающегося по-прежнему обонятельным центром. В результате плащ, т. е. новый мозг (neencephalon), резко преобладает над остальными отделами мозга - старым мозгом (paleencephalon).

Итак, развитие головного мозга совершается под влиянием развития рецепторов, чем и объясняется, что самый высший отдел головного мозга - кора серого вещества - представляет, как учит И.

П. Павлов, совокупность корковых концов анализаторов, т. е. сплошную воспринимающую (рецепторную) поверхность.

Дальнейшее развитие мозга у человека подчиняется иным закономерностям, связанным с его социальной природой. Кроме естественных органов тела, имеющихся и у животных, человек стал пользоваться орудиями труда.

Орудия труда, ставшие искусственными органами, дополнили естественные органы тела и составили техническое вооружение человека.

С помощью этого вооружения человек приобрел возможность не только приспосабливаться самому к природе, как это делают животные, но и приспосабливать природу к своим нуждам.

Труд, как уже говорилось выше, явился решающим фактором становления человека, а в процессе общественного труда возникло необходимое для общения людей средство - речь. «Сначала труд, а затем и вместе с ним членораздельная речь явились двумя самыми главными стимулами, под влиянием которых мозг обезьяны постепенно превратился в человеческий мозг, который, при всем своем сходстве с обезьяньим, далеко превосходит его по величине и совершенству».

Это совершенство обусловлено максимальным развитием конечного мозга, особенно его коры - новой коры (neocortex).

Кроме анализаторов, воспринимающих различные раздражения внешнего мира и составляющих материальный субстрат конкретно-наглядного мышления, свойственного животным (первая сигнальная система действительности,), у человека возникла способность асбстрактного, отвлеченного мышления с помощью слова, сначала слышимого (устная речь) и позднее видимого (письменная речь).

Это составило вторую сигнальную систему, по И. П. Павлову, которая в развивающемся животном мире явилась «чрезвычайной прибавкой к механизмам нервной деятельности». Материальным субстратом второй сигнальной системы стали поверхностные слои новой коры. Поэтому кора конечного мозга достигает своего наивысшего развития у человека.

Таким образом, вся эволюция нервной системы сводится к прогрессивному развитию конечного мозга, который у высших позвоночных и особенно у человека в связи с усложнением нервных функций достигает огромных размеров.

Изложенные закономерности филогенеза обусловливают эмбриогенез нервной системы человека. Нервная система происходит из наружного зародышевого листка, или эктодермы. Эта последняя образует продольное утолщение, называемое медуллярной пластинкой (рис.

Медуллярная пластинка скоро углубляется в медулляярную бороздку, края которой (медуллярные валики) постепенно становятся выше и затем срастаются друг с другом, превращая бороздку в трубку (мозговая трубка).

Мозговая трубка представляет собой зачаток центральной части нервной системы. Задний конец трубки образует зачаток спинного мозга, передний же ее расширенный конец путем перетяжек расчленяется на три первичных мозговых пузырька, из которых происходит головной мозг во всей его сложности.

Мозговая пластинка первоначально состоит только из одного слоя эпителиальных клеток.

Во время замыкания ее в мозговую трубку количество клеток в стенках последней увеличивается, так что возникает три слоя: внутренний (обращенный в полость трубки), из которого происходит эпителиальная выстилка мозговых полостей (эпендима центрального канала спинного мозга и желудочков головного); средний, из которого развивается серое вещество мозга (нервные клетки - нейробласты), наконец, наружный, почти не содержащий клеточных ядер, развивающийся в белое вещество (отростки нервных клеток - нейриты).

Пучки нейритов нейробластов распространяются или в толще мозговой трубки, образуя белое вещество мозга, или же выходят в мезодерму и затем соединяются с молодыми мышечными клетками (миобластами). Таким путем возникают двигательные нервы.

Чувствительные нервы возникают из зачатков спинномозговых узлов, которые заметны уже по краям медуллярной бороздки у места перехода ее в кожную эктодерму. Когда бороздка смыкается в мозговую трубку, зачатки смещаются на ее дорсальную сторону, располагаясь по средней линии.

Затем клетки этих зачатков перемещаются вентрально и располагаются вновь по бокам мозговой трубки в виде так называемых ганглиозных валиков. Оба ганглиозных валика перешнуровываются четкообразно по сегментам дорсальной стороны зародыша, вследствие чего получается на каждой стороне ряд спинномозговых узлов, ganglia spinalia s.

intervertebral. В головной части мозговой трубки они доходят только до области заднего мозгового пузырька, где образуют зачатки узлов чувствительных головных нервов. В ганглиозных зачатках развиваются нейробласты, принимающие вид биполярных нервных клеток, один из отростков которых врастает в мозговую трубку, другой идет на периферию, образуя чувствительный нерв. Благодаря сращению на некотором протяжении от начала обоих отростков получаются из биполярных так называемые ложные униполярные клетки с одним отростком, делящимся в форме буквы «Т», являющиеся характерными для межпозвонковых узлов взрослого.

Центральные отростки клеток, проникающие в спинной мозг, составляют задние корешки спинномозговых нервов, а периферические отростки, разрастаясь вентрально, образуют (вместе с вышедшими из спинного мозга эфферентными волокнами, составляющими передний корешок) смешанный спинномозговой нерв.

Онтогенез (оntogenesis; греч. оп, ontos - сущее + genesis - зарождение, происхождение) - процесс индивидуального развития организма от момента его зарождения (зачатия) до смерти. Выделяют: эмбриональный (зародышевый, или пренатальный) — время от оплодотворения до рождения и постэмбриональный (послезародышевый, или постнатальный) — от рождения до смерти, периоды развития.

Нервная система человека развивается из эктодермы — наружного зародышевого листка.

В конце второй недели эмбрионального развития в дорсальных отделах туловища обособляется участок эпителия – нервная (медуллярная) пластинка , клетки которой интенсивно размножаются и дифференцируются. Ускоренный рост боковых отделов нервной пластинки приводит к тому, что ее края сначала приподнимаются, затем сближаются и, наконец, в конце третьей недели срастаются, формируя первичную мозговую трубку .

После чего мозговая трубка постепенно погружается в мезодерму.

Рис.1. Формирование нервной трубки.

Нервная трубка представляет собой эмбриональный зачаток всей нервной системы человека.

Из нее в дальнейшем формируется головной и спинной мозг, а также периферические отделы нервной системы. При смыкании нервного желобка по бокам в области его приподнятых краев (нервных валиков) с каждой стороны выделяется группа клеток, которая по мере обособления нервной трубки от кожной эктодермы образует между нервными валиками и эктодермой сплошной слой - ганглиозную пластинку.

Последняя служит исходным материалом для клеток чувствительных нервных узлов (спинно- и черепномозговых ганглиев) и узлов вегетативной нервной системы, иннервирующей внутренние органы.

Нервная трубка на ранней стадии своего развития состоит из одного слоя клеток цилиндрической формы, которые в дальнейшем интенсивно размножаются митозом и количество их увеличивается; в результате стенка нервной трубки утолщается.

В этой стадии развития в ней можно выделить три слоя: внутренний (в дальнейшем из него сформируется эпендимальная выстилка), среднего слоя (серое вещество мозга, клеточные элементы этого слоя дифференцируются в двух направлениях: часть их превращается в нейроны, другая часть - в глиальные клетки) и наружного слоя (белое вещество мозга).

Рис.2 .

Этапы развитияголовного мозга человека.

Нервная трубка развивается неравномерно. Вследствие интенсивного развития ее передней части начинает формироваться головной мозг, образуются мозговые пузыри: вначале появляются два пузыря, затем задний пузырь делится еще на два. В результате у четырехнедельных эмбрионов головной мозг состоит из трех мозговых пузырей (передний, средний и ромбовидный мозг).

На пятой неделе передний мозговой пузырь подразделяется на конечный мозг и промежуточный, а ромбовидный – на задний и продолговатый (стадия пяти мозговых пузырей ). Одновременно нервная трубка образует несколько изгибов в сагитальной плоскости.

Из недифференцированной задней части медуллярной трубки развивается спинной мозг со спинно-мозговым каналом. Из полостей эмбрионального головного мозга происходит формирование желудочков мозга .

Полость ромбовидного мозга преобразуется в IY желудочек, полость среднего мозга формирует водопровод мозга, полость промежуточного мозга образует III желудочек мозга, а полость переднего мозга — имеющие сложную конфигурацию боковые желудочки мозга.

После формирования пяти мозговых пузырей в структурах нервной системы происходят сложные процессы внутренней дифференцировки и роста различных отделов мозга.

На 5-10 неделе наблюдается рост и дифференцировка конечного мозга: образуются корковые и подкорковые центры, происходит расслоение коры. Образуются мозговые оболочки. Спинной мозг приобретает дефинитивное состояние. На 10-20 неделе завершаются процессы миграции, формируются все основные отделы головного мозга, на первый план выходят процессы дифференцировки.

Наиболее активно развивается конечный мозг. Полушария головного мозга становятся самой крупной частью нервной системы. На 4-м месяце развития плода человека появляется поперечная щель большого мозга, на 6-м - центральная борозда и другие главные борозды, в последующие месяцы - второстепенные и после рождения - самые мелкие борозды.

В процессе развития нервной системы важную роль играет миелинизация нервных волокон, в результате которой нервные волокна покрываются защитным слоем миелина и значительно вырастает скорость проведения нервных импульсов.

К концу 4-го месяца внутриутробного развития миелин выявляется в нервных волокнах, составляющих восходящие, или афферентные (чувствительные), системы боковых канатиков спинного мозга, тогда как в волокнах нисходящих, или эфферентных (двигательных), систем миелин обнаруживается на 6-м месяце.

Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково-спинномозговых путей начинается на последнем месяце внутриутробной жизни и продолжается в течение года после рождения.

Это свидетельствуются о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем - на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций.

Формирование функции и также зависит и от дифференциации клеточных элементов и их постепенного созревания, которое длится в течение первого десятилетия.

К моменту рождения ребенка нервные клетки достигают зрелости и уже неспособны к делению. В связи с этим в дальнейшем их число не увеличивается.

В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, в частности ее самого сложного отдела - коры большого мозга, играющей особую роль в мозговых механизмах условно-рефлекторной деятельности, формирующейся с первых дней жизни.

Еще один важный этап в онтогенезе это период полового созревания, когда проходит и половая дифференцировка мозга.

В течение всей жизни человека мозг активно изменяется, приспосабливаясь к условиям внешней и внутренней среды, часть этих изменений носит генетически запрограммированный характер, часть является относительно свободной реакцией на условия существования. Онтогенез нервной системы заканчивается только со смертью человека.