Гистология методы. Что такое гистологическое исследование? Исследование шейки матки и эндометрия

Злокачественные новообразования — это группа заболеваний, насчитывающая несколько тысяч видов опухолей разных типов и разной степени злокачественности. Они подразделяются на большие группы в зависимости от того из каких тканей они развиваются: если из эпителиальных (барьерных) — то это раки, если из соединительных тканей (мягких тканей и костей) – саркомы, если из лимфоидных (иммунных) – лимфомы/лейкозы. От того насколько правильно верифицирована опухоль (определен ее тип, степень злокачественности и другие характеристики) зависит правильность и эффективность лечения. Важную роль в этом играют гистологические исследования .

О том, как проходят гистологические исследования, какие задачи кроме диагностических они позволяют решать, что влияет на сроки их выполнения рассказывает заведующая патологоанатомическим отделением с прозектурой НМИЦ онкологии им. Н.Н. Петрова, к.м.н. Анна Сергеевна Артемьева.

Что служит материалом для патоморфологических (гистологических) исследований?

Кусочек ткани пациента: кожи, слизистых оболочек, внутренних органов, костей, головного и спинного мозга и т.п., так называемый биоптат.

Процесс получения фрагмента ткани (биоптата) — биопсия – это несколько разных способов забора материала для гистологического исследования.

Виды биопсии:

  • Пункционная биопсия – «тычок», тонкой или толстой иглой. Пункционные биоптаты редко имеют диаметр больше 1-2 мм.
  • Ножевая биопсия – открытая или эндоскопическая (малоинвазивная), в том числе лапароторако-медиастиноскопия.

Биопсию внутренних органов делают под УЗИ-навигацией, либо с помощью хирургического вмешательства.

Операционный материал – это все что удалено во время операции, как правило, орган или его часть, или несколько органов и/или их частей с образованием (опухолью) или без него.

Как обрабатывают эти материалы для проведения гистологического исследования?

1 Этап. Фиксация — «консервирование» биоптата в формалине — специальном химическом растворе, который предотвращает гниение, позволяет сохранить структуры ткани.

Фиксация биоптата может занимать от 6 до 24 часов – в зависимости от его вида и размера.

Операционный материал фиксируется дольше, в несколько этапов. Сначала предварительная фиксация, которая занимает примерно 12 часов. Затем вырезка нужных фрагментов и повторная фиксация еще 24 часа.

Соотношение объема материала к объему формалина должно быть 1:20.

Время фиксации сократить нельзя!

2 Этап. Процессинг — процесс обезвоживания, обезжиривания и пропитки материала парафином. Автомат перемещает кусочек материала из раствора в раствор.

В качестве растворов применяются: абсолютированный изопропиловый спирт (6-8 смен), ксилол (2 смены), расплавленный парафин (2 смены).

Программа разнится для «жирного» материала (к которым относятся, например, ткани молочной железы) и «нежирного» – 36 и 24 часа соответственно.

Процесс получения парафиновых блоков.

3 Этап. Изготовление парафинового блока. Кусок материала помещается в форму с расплавленным парафином (уже другим нежели во время процессинга – с более высокой температурой плавления) и охлаждается. Выполняется вручную, сложно ускорить.

Микротомия

4 Этап. Изготовление срезов. Толщина образца — кусочка ткани, залитого в парафин – 1-3 мм. Толщина каждого среза 4-5 мкм (0,004-0,005 мм). Выполняет лаборант с использованием специального инструмента – микротома.

Срезы монтируются на стекла и должны высохнуть.

Несмотря на то, что часть материала теряется при выравнивании в микротоме, при должном профессионализме, из одного образца — материала от одной биопсии, операционного материала от одной опухоли, возможно изготовить около 100 стекол (микропрепаратов).

Для чего делаются срезы?

Срезы делаются для рутинной окраски гематоксилинном и эозином, иммуногистохимического исследования и других видов исследований.

Срезы для всех исследований используются одинаковые, различается окраска, могут отличаться стекла, на которые они монтируются, так для ИГХ и FISH нужны специальные адгезивные стекла или заряженные стекла.

Гистостейнер

Блоки и стекла способны храниться долгие годы и использоваться для проведения дополнительных гистологических исследований, пересмотров, а также в научных целях.

Архив

Архив гистологических материалов собирается в НМИЦ онкологии им. Н.Н. Петрова с 1927 года и содержит более 10 млн единиц хранения (микропрепараты — стекла, парафиновые блоки, архивные карточки, влажный архив).

Какие виды гистологических исследований наиболее информативны?

  • Гистологическое исследование
  • Иммуногистохимия (ИГХ)
  • Флуоресцентная гибридизация in situ (FISH), может быть хромофобной (принцип тот же, другой тип метки)

Что позволяют определить разные виды гистологических исследований

Гистологическое исследование – что это такое?

Позволяет верифицировать опухоль – то есть определить из каких клеток она состоит (из какой ткани она развивается), степень ее дифференцировки (зрелости).

Рутинная окраска, выполняющаяся при гистологическом исследовании, позволяет выявить патологический процесс в анализируемом материале (биоптате, операционном материале):

  • воспаление,
  • специфическое воспаление,
  • аномалия развития,
  • опухоль.

Также, в большинстве случаев, благодаря рутинной окраске, можно определить степень злокачественности опухоли и, если она достаточно зрелая, то какова ее природа.

Окрашенные срезы под микроскопом


Инвазивный протоковый рак er 100%.


Карцинома сигмовидной кишки.


Крупноклеточная нейроэндокринная опухоль.


МТС крупноклеточной нейроэндокринной опухоли.


Неспецифический рак молочной железы. Участок in situ карциномы внутри протока, криброзного типа.


Низкодифферинцированный рак пищевода.

При гистологическом исследовании биоптата и операционного материала можно оценить распространенность: размер опухоли и прорастание в окружающие ткани, насколько затронуты лимфоузлы и есть ли метастазы в отдаленные органы (если эти все структуры присланы для гистологического исследования). При консультации готовых микропрепаратов – стекол, это, как правило, невозможно, если опухоль больше размеров гистологической кассеты или рассечена предыдущим исследователем и не предоставлены данные макроскопического исследования.

Во время гистологического исследования изучаются все стекла от одного образца – материала, полученного от одного вмешательства — одной операции или одной биопсии, вне зависимости от их количества, это считается одной консультацией.

Сроки выполнения гистологического исследования зависят от количества микропрепаратов и от категории сложности того процесса, который в них обнаруживается, сроки могут удлиняться, особенно при необходимости использования дополнительных методов исследования и анализа дополнительных сведений. На сроки выполнения гистологического исследования влияет полнота предоставленной пациентом клинической информации, в том числе данных уже проведенных исследований.

Иммуногистохимия (ИГХ)

Сложное многоэтапное исследование, выполняется после гистологического исследования на том же материале. Опухолевые срезы окрашиваются антителами, которые способны связываться антигенами (белками), которые несут опухолевые клетки. Разные опухолевые клетки несут разные антигены, к каждому из которых подобно ключа к замку подходит антитело.

Один из этапов ИГХ

ИГХ исследование - это комбинаторика. 100% специфичных и чувствительных к какой-то опухоли маркеров не существует, но есть набор антигенов, которые в определенном типе опухоль должны быть и набор тех, которых там быть не должно, таким образом ИГХ-панель строится так чтобы включать несколько антител, которые должны быть позитивны и несколько, которые должны быть негативны. Для разных опухолей различаются эти наборы позитивных/негативных маркеров.

При проведении прогностической ИГХ – выявлении маркеров чувствительности к терапии определяется набор таких маркеров для конкретных опухолей, например, рака молочной железы: рецепторы стероидных гормонов (эстроген, прогестерон), рецептор эпидермального фактора роста (HER2) и индекс пролиферативной активности Ki67 (скорости деления клеток).

Стекла окрашиваются последовательно — различными антителами красятся наборы маркеров в несколько этапов, процесс окраски стекол одним антителом занимает 48 часов.

Таким образом, каждое антитело наносится на отдельный срез ткани, монтированный на отдельное стекло, как правило с соответствующим внешним контролем, количество реакций (используемых антител) и этапов окраски может существенно варьировать в зависимости от конкретной диагностической ситуации, все зависит от индивидуальных особенностей опухоли. Проводится такое количество окрасок, которое необходимо для того, чтобы выявить наиболее характерный для определенной опухоли набор позитивных и негативных маркеров.

Кому-то для этого будет достаточно 5 антител, а кому-то необходимо сделать 20 окрасок и более. Максимальное количество окрасок, которое нам приходилось делать – 212.

Поэтому точные сроки и стоимость этого исследования невозможно определить заранее. Разные по течению и прогнозу опухоли могут быть очень похожи друг на друга, только минимальные различия в окрашивании, с учетом клинических данных и данных других методов обследования, могут позволить установить верный диагноз.

Есть целый ряд доброкачественных опухолей, симулирующих злокачественные, в том числе высокоагрессивные, а некоторые злокачественные высоко дифференцированные опухоли трудно отличить от воспалительных и реактивных процессов. В таких ситуациях только опыт и квалификация патоморфолога, анализ всего комплекса доступной информации (снимки КТ, МРТ, рентген, протокол операции, и др.) позволяют поставить диагноз.

В грамотной интерпретации результатов ИГХ очень важна роль эксперта, ведь те случаи, с которыми приходится работать, в большинстве своем, сложные. Практически не существует антител, которые могут выступать в качестве 100%-х маркеров той или иной опухоли, врачу всегда приходится взвешивать различные вероятности.

Что определяется с помощью ИГХ?

  • Наличие рецепторов гормонов прогестерона и эстрогена при раке молочной железы ;
  • Экспрессию HER-2/neu в клетках при раке молочной железы, раке желудка ;
  • Определить ходжкинские и неходжкинские лимфомы — установить точный диагноз лимфомы на сегодняшний день невозможно без применения этого вида исследования.
  • Определить первичная это опухоль или метастазы, тканевую принадлежность метастазов.

Иммуногистохимия позволяет оценить потенциальный темп роста опухоли, ответ на химио-, таргетную, гормональную терапию.

Флуоресцентная гибридизация in situ (FISH-тест)

Это метод молекулярно-генетической диагностики в ткани.

FISH проводится в срезе ткани и позволяет привязать генетическую перестройку к конкретной опухолевой клетке.

В этом тесте также используются специальные красители, которые связываются только с определенными участками хромосом. Их называют зондами, которые могут быть помечены флуоресцентным или хромогенным красителем, визуализирующимися при помощи флуоресцентного или светового микроскопа.

Технические операции по подготовке гистологических стекол к этому исследованию занимает 2 рабочих дня.

Анализ препарата с помощью многоголового микроскопа.

Полученные микропрепараты очень чувствительны к внешней среде – они могут выцвести со временем, чтобы избежать потерь информации все FISH-препараты сканируются, создается их цифровая копия, которая доступна для внешнего пересмотра. Специалисты просматривают флуоресцирующий материал в темном поле, в анализе препарата принимают участие как минимум 2 специалиста. При необходимости используется и цифровой анализ.

Что определяется с помощью FISH-теста?

FISH-тест позволят диагностировать некоторые виды опухолей, определяет целесообразность использования некоторых химиотерапевтических препаратов.

  • определяется наличие амплификации HER2 в случаях пограничного результата по данным ИГХ, что необходимо для назначения таргетной терапии;
  • проводится диагностика, то есть выявление генетических перестроек специфичных для определенного типа опухолей, когда невозможно окончательно установить диагноз при помощи более простых методик, чаще всего это саркомы мягких тканей и опухоли головного мозга;
  • генетические отклонения, вызывающие рак того или иного органа;
  • при лимфомах эта методика используется в диагностических целях и для выявления факторов неблагоприятного прогноза, то есть показаний для ранней интенсификации лечения.

Проведение гистологического исследования, и в первую очередь FISH-теста — это экспертная работа, которая зависит от квалификации специалиста. Очень многие мутации, которые выявляются в опухолях, не всегда являются метками опухолей, они могут находиться и в доброкачественных образованиях или нормальных тканях.

За год патологоанатомическое отделение НМИЦ онкологии имени Н.Н. Петрова выполняет около 20000 гистологических исследований (пациентов), из них около 5000 консультативных случаев (пересмотров), более 30000 ИГХ исследований, а также участвует в программе внешнего контроля качества ИГХ исследований NordIQ.

Специалисты отделения обладают огромным опытом проведения гистологических исследований и экспертными компетенциями.

Помните! Гистологические исследования – это отправная точка, от того насколько грамотно они выполнены зависит точность поставленного диагноза и эффективность назначенного лечения.

Скорость выполнения гистологических исследований и адекватность гистологического заключения зависят от ряда факторов:

  • Качества стекол и блоков;
  • Комплектности предоставления стекол (необходимо предоставить все стекла и блоки);
  • Предоставление пациентом дополнительной информации, которая поможет верно интерпретировать данные гистологического исследования, ИГХ и FISH-теста, а именно: данные анамнеза заболевания, данные о сопутствующих заболеваниях, в первую очередь инфекционных (ВИЧ, гепатиты); все данные всех проведенных обследований и вмешательств: снимки — рентген, КТ, МРТ, УЗИ, протоколы операций, выписки.

После выполнения гистологического исследования пациент получает гистологическое заключение/протокол исследования гистологического материала.

Расшифровка гистологического исследования: на что обратить внимание?

Гистологическое заключение включает в себя несколько рубрик (полей):

Макроскопическое описание

Заполняется как для биоптатов — не обязательно, так и для операционного материала, для которого имеет крайне важное значение в ряде случаев.

Микроскопическое описание

Описание изменений на микроскопическом уровне, не обязательно к заполнению, так как вся необходимая информация может быть отражена в поле «заключение».

Результаты иммуногистохимического исследования

В этом поле описано какие антитела использовались в данном случае и каков результат окрашивания: наличие окрашивание или его отсутствие, локализация в клетке при необходимости, а также процент позитивных клеток и интенсивность реакции, когда это имеет значение.

Патологоанатомическое заключение

Содержит нозологическую/классификационную единицу, если ее возможно установить по исследованному материалу, то есть дает ответы на вопросы:

  • Это первичная опухоль или метастаз?
  • Где локализован первичный опухолевый очаг?
  • Каков гистологический тип опухоли (из клеток какого типа она состоит).

Также приводятся все необходимые прогностические данные: степень дифференцировки, параметры, влияющие на стадию, состояние краев резекции, если возможно их оценить и т.п.

Поле может содержать комментарии, относительно возможного направления дальнейшего обследования, вероятности того или иного диагноза, необходимости ознакомиться с теми или иными клиническими данными и др.

Мы не рекомендуем пациентам самостоятельно заниматься расшифровкой показателей гистологического исследования, используя информацию, полученную на различных Интернет-сайтах и форумах пациентов, так как на интерпретацию данных влияет большое количество факторов, в том числе, возраст пациента, данные других исследований и др.

Расшифровкой исследования может заниматься только специалист – врач онколог по профилю заболевания!


Что вам необходимо сделать

  1. Если вы хотите узнать побольше о бесплатных возможностях ФБГУ НМИЦ онкологии им. Н.Н. Петрова Минздрава России, получить очную или заочную консультацию по диагностике и лечению, записаться на приём, ознакомьтесь с информацией на официальном сайте .
  2. Если вы хотите общаться с нами через социальные сети, обратите внимание на аккаунты в

Современные методы гистологических исследований весьма многочисленны и разнообразны. Они позволяют производить структурный и гистохимический анализ гистологических объектов на микроскопическом и субмикроскопическом уровнях. Основным этапом микроскопического изучения животных тканей является исследование объекта средствами классического микроскопического метода, сущность которого определяется фиксацией материала исследования с последующим приготовлением окрашенных срезов. Фиксация сводится к закреплению прижизненного строения исследуемого объекта. К фиксирующим средствам относят формалин (5 - 20%), этиловый спирт, осмиевую кислоту и различные по составу смеси. После фиксации материала можно готовить тонкие срезы (1 - 10 мкм), предварительно заключив его в парафин или целлоидин. Для приготовления более толстых срезов (20 - 50 мкм) материал замораживают. Объектом исследования служат также мазки, отпечатки или тонкие пленки тканей.

Для лучшего выявления отдельных структур срезы окрашивают. Гистологические красители подразделяют на три группы: кислые, основные и специальные. Кислые красители - красящие кислоты или их соли (например, пикриновая кислота, эозин, флоксин, азокармин и др.). Кислые свойства им придают нитро-группы (NO2), хиноидные группы (0 = N = O), гидроксильные группы (ОН), карбоксильные группы (COOH). Структуры, окрашенные кислыми красителями, называют оксифильными или ацидофильными. У основных красителей (сафронин, пиронин, тионин и др.) окрашивающая способность определяется щелочной группой. Элементы ткани, окрашивающиеся основными красителями, определяют как базофильные. В качестве щелочных групп в основных красителях могут быть аминогруппы (NР2), монометиламиногрулпы (NH - CH3), имидогруппы (NH) и др.
Специальные красители специфически взаимодействуют лишь с определенными веществами. Например, судан III и осмиевая кислота выявляют жиры и жироподобные вещества.
Окрашенные срезы обезвоживают, заключают в канадский бальзам, покрывают покровным тонким стеклом и исследуют под микроскопом.

Световая микроскопия - основной метод анализа строения животных и растительных клеток и тканей. Современные микроскопы обеспечивают разрешение (возможность наблюдать две точки раздельно) порядка 0,2 мкм и дают максимальное увеличение в 2000 - 2500 раз (рис. 1). К световой микроскопии относят также фазово-контрастную микроскопию, флуоресцентную и ультрафиолетовую.

Фазово-контрастная микроскопия используется для исследования прозрачных бесцветных объектов, в частности живых клеток и тканей. При прохождении через такую среду фаза световых волн смещается на величину, определяемую толщиной материала и скоростью проходящего через него света. Фазово-контрастный микроскоп преобразует эти невидимые глазом фазовые сдвиги в изменении амплитуды световых волн. При этом получается черно-белое изображение, плотность отдельных участков которого зависит от величины произведения толщины объекта на разность в показателях преломления света в нем и в окружающей среде.

Флуоресцентная микроскопия. Флуоресценция - свечение объекта, возбуждаемое лучистой энергией. При данном исследовании препарат просматривают в ультрафиолетовых или фиолетовых и синих лучах. Различают собственную и наведенную флуоресценцию, вызванную особыми красителями - флуорохромами. Последние, взаимодействуя с различными компонентами клетки, дают специфическое свечение соответствующих структур. Например, флуорохром акридиновой оранжевой с ДНК дает зеленое свечение, а с РНК - красное. Основное преимущество этого метода - возможность прижизненных наблюдений и его высокая чувствительность.

Ультрафиолетовая микроскопия основана на использовании коротких ультрафиолетовых лучей с длиной волны 0,2 мкм. Наименьшее разрешаемое расстояние ультрафиолетового микроскопа 0,1 мкм. Изображение регистрируется на фотопластинке или на люминесцентном экране.

Электронная микроскопия - метод субмикроскопического исследования, осуществляемый с помощью трансмиссионного (просвечивающего) электронного микроскопа. В таком микроскопе длина электромагнитных волн в 100 000 раз короче волны видимого света. Теоретически разрешающая способность у него составляет 5 - 10 А (0,0005 - 0,0010 мкм) при напряжении 50000 В. В современных трансмиссионных электронных микроскопах разрешающая способность составляет 0,1 - 0,7 нм. Метод сканирующей электронной микроскопии обеспечивает объемное изучение поверхностей объектов исследования.

Авторадиография. Метод цитологического исследования, позволяющий анализировать локализацию в клетках и тканях веществ, меченных радиоактивными изотопами. Включенные в клетки изотопы восстанавливают бромистое серебро фотоэмульсии, покрывающей срез. После проявления фотоэмульсии видны зерна серебра (треки), свидетельствующие о локализации в клетке меченых веществ. Методом авторадиографии выявляют место синтеза определенных веществ, пути их внутриклеточного транспорта, состав белков и др.

Гистохимические методы исследования позволяют определить химическую природу составных элементов клеток и межклеточного вещества тканей животных организмов. В основе этих методов лежит использование специфических химических реакций с образованием нерастворимых продуктов синтеза, локализованных в области изучаемых структур. Гистохимическими методами определяют в структурах тканей аминокислоты, белки, нуклеиновые кислоты (ДНК и РНК), различные виды углеводов, липидов, активность ферментов. Продукты реакции анализируют количественно.

В гистохимических исследованиях для количественного анализа применяют различные методы морфометрии, цитоспектрофотометрии, цитоспектрофлуорометрии, интерферрометрии с последующей математической обработкой цифрового материала.
Методы прижизненного исследования животных тканей.

Культура тканей. Живые клетки и ткани выращивают вне организма в специальных капсулах - в соответствующей питательной среде и при соответствующей температуре. В тканевых культурах можно изучать движение, рост, деление клеток и влияние на них различных химических и физических факторов. Данный метод широко используют при изучении вирусов. В культурах тканей изучают строение и жизнедеятельность клеток, используя цейтраферную микрокиносъемку, фотографируя клетки культуры с определенными, оптимальными для анализа интервалами времени па кинопленку. Культивирование тканей можно проводить в организме животного, помещая их в камеры с пористой стенкой ("диффузионные камеры").

Прижизненная окраска тканей. Некоторые коллоидные красители (метиленовый синий, нейтральный красный, трипановый синий и др.) в определенных дозах нетоксичны и при введении их в кровь животному окрашивают соответствующие структуры тканей.

Приготовление гистологического препарата

После забора материала выполняется его подготовка к исследованию, включающая в себя ряд этапов.

1. Фиксация (от лат. fixatio – закрепление) – фрагмент ткани обрабатывают с помощью жидкости-фиксатора, в роли которого чаще всего выступает формалин, реже – спирты, пикриновая кислота и др. Такая обработка предотвращает распад клеток и разрушение структуры ткани под действием собственных ферментов клеток и процессов гниения, таким образом сохраняя прижизненную структуру и делая возможным изучение ткани. Принцип действия фиксирующих жидкостей основан на быстрой гибели клеток и коагуляции белка. Наиболее распространенный тип фиксации – иммерсионная фиксация (от лат. immersio – погружение), при которой фрагмент ткани целиком погружается в раствор; в экспериментальных условиях также используют перфузионную фиксацию (от лат. perfusio – вливание), при которой фиксатор вводят через сосудистую систему. При этом используют как технический формалин (марка ФМ ГОСТ 1625-89), так и подготовленный («забуференный» формалин), который отличается большей стабильностью – не образуется белый осадок, свойственный техническому формалину при температуре ниже 40 °С.

2. Проводка – процесс дегидратации (обезвоживания) фрагмента ткани и пропитки его парафином. Этот этап обеспечивает уплотнение ткани, которое, в свою очередь, необходимо для получения срезов (если ткань будет излишне мягкой, то при микротомировании она будет «сминаться», образуя складки, разрывы и другие артефакты, делающие ее непригодной к изучению). Традиционно проводку осуществляли путем последовательного погружения ткани в растворы ксилола и этилового спирта, однако такой метод имеет ряд существенных недостатков, как-то: трудоемкость, длительность (до четырех суток), испарение реагентов в воздух лаборатории (что небезопасно для сотрудников лаборатории, так как ксилолы образуют взрывоопасные паровоздушные смеси, вызывают острые и хронические поражения кроветворных органов, при контакте с кожей – дерматиты), а также нестабильное качество получаемой ткани, зависящее от человеческого фактора, а именно действий лаборанта. Для решения проблем такого рода лаборатории используют альтернативные реагенты, такие как изопропанол, являющийся нетоксичным, а также аппараты – гистопроцессоры, имеющие закрытый контур и таким образом не допускающие испарений в воздух лаборатории. Путем использования гистопроцессоров также можно значительно уменьшить время проводки по сравнению с ручным методом (до одного часа при использовании гистопроцессора Xpress 120 за счет применения вакуум-инфильтрационной и микроволновой методик.

3. Заливка – процесс создания блока, достаточно твердого, чтобы быть пригодным для резки (микротомирования). Выполняется путем заливания фрагмента ткани жидким парафином, целлоидином, пластмассой или специальными средами для заливки. Затем залитую ткань остужают до затвердевания блока. Целлоидин в настоящее время практически не используется; чистый парафин также обладает рядом недостатков, делающих его непригодным для исследования – при его затвердевании образуются кристаллы, уменьшающие его объем на 5-10 %, что, в свою очередь, ведет к деформации ткани, а также из-за кристаллической структуры он легко крошится при резке. Поэтому чаще всего для изготовления блоков пользуются специальными заливочными средами, представляющими собой смесь парафинов с присадками в виде рисового, пчелиного воска или полимеров. Эти присадки придают парафину эластичность, что не дает ему крошиться при резке. Чтобы создать гомогенную среду для заливки, воск и парафин расплавляют, охлаждают и тщательно перемешивают, повторяя всю процедуру 5-10 раз. Это достаточно трудоемкий процесс, качество получаемой среды нестабильно, поэтому некоторые лаборатории пользуются готовыми средами для заливки, изготовленными в заводских условиях и не требующих дополнительной гомогенизации.

4. Резка, или микротомирование, представляет собой изготовление тонких срезов на специальном приборе – микротоме. Толщина срезов, предназначенных для световой микроскопии, не должна превышать 4 – 5 мкм, для электронной – 50 – 60 нм.

5. Окрашивание срезов позволяет выявить структуру ткани за счет неодинакового химического сродства различных элементов ткани к гистологическим красителям. Например, окраска гематоксилином и эозином позволяет выявить кислые структуры ткани, такие как ДНК и РНК, за счет их связывания с гематоксилином, имеющим щелочную реакцию, и цитоплазму клеток, которая связывается с эозином(Основная статья – окраска гематоксилином и эозином). Перед окрашиванием выполняется монтирование среза на предметное стекло. Для избежания формирования складок срез после микротомирования помещают на поверхность подогретой воды, где он расправляется, а потом уже на стекло. Окрашивание, как и все остальные стадии процесса изготовления гистологического препарата, может выполняться вручную и автоматически. Различают традиционное окрашивание и иммуногистохимическое.


,


2. Объекты исследования гистологии

3. Приготовление гистологических препаратов

4. Методы исследования

5. Исторические этапы развития гистологии

1. Гистология наука о микроскопическом и субмикроскопическом строении, развитии и жизнедеятельности тканей животных организмов. Следовательно, гистология изучает один из уровней организации живой материи тканевой. Различают следующие иерархические уровни организации живой материи:

    клеточный;

    тканевой;

    структурно-функциональные единицы органов;

    органный уровень;

    системный уровень;

    организменный уровень

Гистология, как учебная дисциплина , включает в себя следующие разделы: цитологию, эмбриологию, общую гистологию (изучает строение и функции тканей), частную гистологию (изучает микроскопическое строение органов).

Основным объектом изучения гистологии является организм здорового человека и потому данная учебная дисциплина именуется как гистология человека.

Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей.

Гистология, как и анатомия, относится к морфологическим наукам, главной задачей которых является изучение структур живых систем. В отличие от анатомии, гистология изучает строение живой материи на микроскопическом и электронно-микроскопическом уровне. При этом, изучение строения различных структурных элементов проводится в настоящее время с учетом выполняемых ими функций. Такой подход к изучению структур живой материи называется гистофизиологическим, а гистология нередко именуется как гистофизиология. Кроме того, при изучении живой материи на клеточном, тканевом и органном уровнях рассматривается не только форма, размеры и расположение интересующих структур, но методом цито- и гистохимии нередко определяется и состав веществ, образующих эти структуры. Наконец, изучаемые структуры обычно рассматриваются с учетом их развития, как во внутриутробном (эмбриональном) периоде, так и на протяжении постэмбрионального онтогенеза. Именно с этим связана необходимость включения эмбриологии в курс гистологии.

Гистология, как любая наука, имеет свои объекты и методы их изучения. Непосредственными объектами изучения являются клетки, фрагменты тканей и органов, особым способом приготовленные для изучения их под микроскопом.

2. Объекты исследования подразделяются на:

    живые (клетки в капле крови, клетки в культуре и другие);

    мертвые или фиксированные, которые могут быть взяты как от живого организма (биопсия), так и от трупов.

В любом случае после взятия кусочков они подвергаются действию фиксирующих растворов или замораживанию. И в научных, и в учебных целях используются фиксированные объекты. Приготовленные определенным способом препараты, используемые для изучения под микроскопом, называются гистологическими препаратами.

Гистологический препарат может быть в виде:

    тонкого окрашенного среза органа или ткани;

    мазка на стекле;

    отпечатка на стекле с разлома органа;

    тонкого пленочного препарата.

Гистологический препарат любой формы должен отвечать следующим требованиям:

    сохранять прижизненное состояние структур;

    быть достаточно тонким и прозрачным для изучения его под микроскопом в проходящем свете;

    быть контрастным, то есть изучаемые структуры должны под микроскопом четко определяться;

    препараты для световой микроскопии должны долго сохраняться и использоваться для повторного изучения.

Эти требования достигаются при приготовлении препарата.

3. Выделяют следующие этапы приготовления гистологического препарата

Взятие материала (кусочка ткани или органа) для приготовления препарата. При этом учитываются следующие моменты: забор материала должен проводиться как можно раньше после смерти или забоя животного, а при возможности от живого объекта (биопсия), чтобы лучше сохранились структуры клетки, ткани или органа; забор кусочков должен производиться острым инструментом, чтобы не травмировать ткани; толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор мог проникнуть в толщу кусочка; обязательно производится маркировка кусочка (указывается наименование органа, номер животного или фамилия человека, дата забора и так далее).

Фиксация материала необходима для остановки обменных процессов и сохранения структур от распада. Фиксация достигается чаще всего погружением кусочка в фиксирующие жидкости, которые могут быть простыми спирты и формалин и сложными раствор Карнуа, фиксатор Цинкера и другие. Фиксатор вызывает денатурацию белка и тем самым приостанавливает обменные процессы и сохраняет структуры в их прижизненном состоянии. Фиксация может достигаться также замораживанием (охлаждением в струе СО2, жидким азотом и другие). Продолжительность фиксации подбирается опытным путем для каждой ткани или органа.

Заливка кусочков в уплотняющие среды (парафин, целлоидин, смолы) или замораживание для последующего изготовления тонких срезов.

Приготовление срезов на специальных приборах (микротоме или ультрамикротоме) с помощью специальных ножей. Срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной микроскопии - монтируются на специальные сеточки.

Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов удаляется уплотняющая среда (депарафинизация). Окраской достигается контрастность изучаемых структур. Красители подразделяются на основные, кислые и нейтральные. Наиболее широко используются основные красители (обычно гематоксилин) и кислые (эозин). Нередко используют сложные красители.

Просветление срезов (в ксилоле, толуоле), заключение в смолы (бальзам, полистерол), закрытие покровным стеклом.

После этих последовательно проведенных процедур препарат может изучаться под световым микроскопом.

Для целей электронной микроскопии в этапах приготовления препаратов имеются некоторые особенности, но общие принципы те же. Главное отличие заключается в том, что гистологический препарат для световой микроскопии может длительно храниться и многократно использоваться. Срезы для электронной микроскопии используются однократно. При этом вначале интересующие объекты препарата фотографируются, а изучение структур производится уже на электронограммах.

Из тканей жидкой консистенции (кровь, костный мозг и другие) изготавливаются препараты в виде мазка на предметном стекле, которые также фиксируются, окрашиваются, а затем изучаются.

Из ломких паренхиматозных органов (печень, почка и другие) изготавливаются препараты в виде отпечатка органа: после разлома или разрыва органа, к месту разлома органа прикладывается предметное стекло, на которое приклеиваются некоторые свободные клетки. Затем препарат фиксируется, окрашивается и изучается.

Наконец, из некоторых органов (брыжейка, мягкая мозговая оболочка) или из рыхлой волокнистой соединительной ткани изготавливаются пленочные препараты путем растягивания или раздавливания между двумя стеклами, также с последующей фиксацией, окраской и заливкой в смолы.

4. Основным методом исследования биологических объектов, используемым в гистологии является микроскопирование , т. е. изучение гистологических препаратов по микроскопом. Микроскопия может быть самостоятельным методом изучения, но в последнее время она обычно сочетается с другими методами (гистохимии, гисторадиографии и другие). Следует помнить, что для микроскопии используются разные конструкции микроскопов, позволяющие изучить разные параметры изучаемых объектов. Различают следующие виды микроскопии:

    световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;

    ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);

    люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;

    фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;

    поляризационная микроскопия для изучения, главным образом, волокнистых структур;

    микроскопия в темном поле для изучения живых объектов;

    микроскопия в падающем свете для изучения толстых объектов;

    электронная микроскопия (разрешающая способность до 0,1-0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.

Гистохимические и цитохимические методы позволяет определять состав химических веществ и даже их количество в изучаемых структурах. Метод основан на проведении химических реакций с используемым реактивом и химическими веществами, находящимися в субстрате, с образованием продукта реакции (контрастного или флюоресцентного), который затем определяется при световой или люминесцентной микроскопии.

Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод используется чаще всего в экспериментах на животных.

Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2-х до 150 тыс.) и получают интересующие фракции, которые затем изучают различными методами.

Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах.

Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов.

Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.

Единицы измерения, используемые в гистологии

Для измерения структур в световой микроскопии используются в основном микрометры: 1 мкм составляет 0,001 мм; в электронной микроскопии используются нанометры: 1 нм составляет 0,001 мкм.

5. В истории развития гистологии условно выделяют три периода:

Домикроскопический период (с IV в. до н. э. по 1665 г.) связан с именами Аристотеля, Галена, Авиценны, Везалия, Фаллопия и характеризуется попытками выделения в организме животных и человека неоднородных тканей (твердых, мягких, жидких и так далее) и использованием методов анатомической препаровки.

Микроскопический период (с 1665 г. по 1950 г.). Начало периода связывают с именем английского физика Роберта Гука, который, во-первых, усовершенствовал микроскоп (полагают, что первые микроскопы были изобретены в самом начале XVII в.), во-вторых, использовал его для систематического исследования различных, в том числе биологических объектов и опубликовал результаты этих наблюдений в 1665 г. в книге "Микрография", в-третьих, впервые ввел термин "клетка" ("целлюля"). В дальнейшем осуществлялось непрерывное усовершенствование микроскопов и все более широкое использование их для изучения биологических тканей и органов.

Особое внимание уделялось изучению строения клетки. Ян Пуркинье описал наличие в животных клетках "протоплазмы" (цитоплазмы) и ядра, а несколько позже Р. Броун подтвердил наличие ядра и в большинстве животных клеток. Ботаник М. Шлейден заинтересовался происхождением клетокцитокенезисом. Результаты этих исследований позволили Т. Швану, на основании их сообщений, сформулировать клеточную теорию (1838-1839 гг.) в виде трех постулатов:

    все растительные и животные организмы состоят из клеток;

    все клетки развиваются по общему принципу из цитобластемы;

    каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.

Однако вскоре Р. Вирхов (1858 г.) уточнил, что развитие клеток осуществляется путем деления исходной клетки (любая клетка из клетки). Разработанные Т. Шваном положения, клеточной теории актуальны до настоящего времени, хотя формулируется по-иному.

Современные положения клеточной теории:

    клетка является наименьшей единицей живого;

    клетки животных организмов сходны по своему строению;

    размножение клеток происходит путем деления исходной клетки;

    многоклеточные организмы представляют собой сложные ансамбли клеток и их производных, объединенные в системы тканей и органов, связанные между собой клеточными, гуморальными и нервными формами регуляции.

    Дальнейшее совершенствование микроскопов, особенно создание ахроматических объективов, позволило выявить в клетках более мелкие структуры:

    клеточный центр Гертвиг, 1875 г.;

    сетчатый аппарат или пластинчатый комплекс Гольджи, 1898 г.;

    митохондрии Бенда, 1898 г.

Современный этап развития гистологии начинается с 1950 г. с момента начала использования электронного микроскопа для изучения биологических объектов, хотя электронный микроскоп был изобретен раньше (Е. Руска, М. Кноль, 1931 г.). Однако для современного этапа развития гистологии характерно внедрение не только электронного микроскопа, но и других методов: цито- и гистохимии, гисторадиографии и других вышеперечисленных современных методов. При этом обычно используется комплекс разнообразных методик, позволяющий составить не только качественное представление об изучаемых структурах, но и получить точные количественные характеристики. Особенно широко в настоящее время используются различные морфометрические методики, в том числе автоматизированные системы обработки полученной информации с использованием компьютеров.

ЛЕКЦИЯ 2. Цитология. Цитоплазма

Для прогресса гистологии, цитологии и эмбриологии большое значе­ние имеет внедрение достижений физики и химии, новых методов смеж­ных наук - биохимии, молекулярной биологии, генной инженерии.

Современные методы исследования позволяют изучать ткани не только как единое целое, но и выделять из них отдельные типы клеток для изуче­ния их жизнедеятельности в течение длительного времени, выделять отдель­ные клеточные органеллы и составляющие их макромолекулы (например, ДНК), исследовать их функциональные особенности.

Такие возможности открылись в связи с созданием новых приборов и технологий - различных типов микроскопов, компьютерной техники, рен-тгеноструктурного анализа, применения метода ядерно-магнитного резо­нанса (ЯМР), радиоактивных изотопов и авторадиографии, электрофореза и хроматографии, фракционирования клеточного содержимого с помощью ультрацентрифугирования, разделения и культивирования клеток, получе­ния гибридов; использования биотехнологических методов - получения гибридом и моноклональных антител, рекомбинантных ДНК и др.

Таким образом, биологические объекты можно изучать на тканевом, клеточном, субклеточном и молекулярном уровнях. Несмотря на внедрение в естественные науки разнообразных биохимических, биофизических, фи­зических и технологических методов, необходимых для решения многих вопросов, связанных с жизнедеятельностью клеток и тканей, гистология в основе своей остается морфологической наукой со своим набором методов. Последние позволяют охарактеризовать процессы, происходящие в клетках и тканях, их структурные особенности.

Главными этапами цитологического и гистологического анализа явля­ются выбор объекта исследования, подготовка его для изучения в микро­скопе, применение методов микроскопирования, качественный и количе­ственный анализ изображений.

Объектами исследования служат живые и фиксированные клет­ки и ткани, их изображения, полученные в световых и электронных мик­роскопах или на телевизионном экране дисплея. Существует ряд методов, позволяющих проводить анализ указанных объектов.

Методы микроскопирования гистологических препаратов

Основными методами изучения биологических микрообъектов являют­ся световая и электронная микроскопия, которые широко используют"ся в экспериментальной и клинической практике.

Микроскопирование - основной метод изучения микрообъектов, ис­пользуемый в биологии более 300 лет. С момента создания и применения первых микроскопов они постоянно совершенствовались. Современные микроскопы представляют собой разнообразные сложные оптические си­стемы, обладающие высокой разрешающей способностью. Размер самой маленькой структуры, которую можно видеть в микроскопе, определяется наименьшим разрешаемым расстоянием (d o ), которое в основном зависит от длины волны света (\) и длины волн электромагнитных колебаний потока электронов и др. Эта зависимость приближенно определяется фор­мулой d 0 = 1 / 2 \. Таким образом, чем меньше длина волны, тем меньше разрешаемое расстояние и тем меньшие по размерам микроструктуры можно видеть в препарате. Для изучения гистологических препаратов при­меняют разнообразные виды световых микроскопов и электронные мик­роскопы.

Рис. 1. Микроскопы для биологичес­ких исследований.

А - световой биологический микроскоп «Биолам-С»: 1 - основание; 2 - тубусо-держатель; 3 - наклонный тубус; 4 - оку­ляр, 5 - револьвер; 6 - объективы; 7 - столик; 8 - конденсор с ирисовой диаф­рагмой; 9 - винт конденсора; 10 - зерка­ло; 11 - микрометрический винт; 12 - макрометрический винт. Б - электронный микроскоп ЭМВ-100АК с автоматизиро­ванной системой обработки изображений: 1 - колонка микроскопа (с электронно-оптической системой и камерой для образ­цов); 2 - пульт управления; 3 - камера с люминесцентным экраном; 4 - блок ана­лиза изображений; 5 - датчик видеосигна­ла.

Световая микроскопия. Для изучения гистологических микрообъектов применяют обычные световые микроскопы и их разновидности, в которых используются источники света с различными длинами волн. В обычных све­товых микроскопах источником освещения служит естественный или ис­кусственный свет (рис. 1, А). Минимальная длина волны видимой части спектра равна примерно 0,4 мкм. Следовательно, для обычного светового микроскопа наименьшее разрешаемое расстояние равно приблизительно 0,2 мкм ( d o = "/,- 0,4 мкм = 0,2 мкм), а общее увеличение (произведение увеличения объектива на увеличение окуляра) может быть 1500-2500.

Таким образом, в световом микроскопе можно видеть не только отдель­ные клетки размером от 4 до 150 мкм, но и их внутриклеточные структу­ры - органеллы, включения. Для усиления контрастности микрообъектов применяют их окрашивание.

Ультрафиолетовая микроскопия . Это разновидность световой микроско­пии. В ультрафиолетовом микроскопе используют более короткие ультрафи­олетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь в 2 раза меньше, чем в обычных световых микроскопах, и составляет при­близительно 0,1 мкм (d o = V 2 - 0,2 мкм = 0,1 мкм). Полученное в ультрафи­олетовых лучах невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специаль­ных устройств (люминесцентный экран, электронно-оптический преобра­зователь).

Флюоресцентная (люминесцентная) микроскопия. Явления флюоресцен­ции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный пе­реход из возбужденного состояния в нормальное происходит с испускани­ем света, но с большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксеноновые лампы сверхвысокого давления, обладающие вы­сокой яркостью в области спектра 0,25-0,4 мкм (ближние ультрафиолето­вые лучи) и 0,4-0,5 мкм (сине-фиолетовые лучи). Длина световой волны флюоресценции всегда больше длины волны возбуждающего света, поэто­му их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первич­ную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой.

Первичной флюоресценцией обладают серотонин, катехолами-ны (адреналин, норадреналин), содержащиеся в нервных, тучных и других клетках, после фиксации тканей в парах формальдегида при 60-80 °С (ме­тод Фалька).

Вторичная флюоресценция возникает при обработке препаратов специальными красителями - флюорохромами.

Существуют различные флюорохромы, которые специфически связы­ваются с определенными макромолекулами (акридин оранжевый, родамин, флюоресцеин и др.). Например, при обработке препаратов чаще всего упот­ребляется флюорохром акридиновый оранжевый. В этом случае ДНК и ее соединения в клетках имеют ярко-зеленое, а РНК и ее производные - ярко-красное свечение. Таким образом, спектральный состав излучения несет информацию о внутреннем строении объекта и его химическом со­ставе. Вариант метода флюоресцентной микроскопии, при котором и воз­буждение, и излучение флюоресценции происходят в ультрафиолетовой области спектра, получил название метода ультрафиолетовой флюоресцент­ной микроскопии .

Фазово-контрастная микроскопия. Этот метод служит для получения контрастных изображений прозрачных и бесцветных живых объектов, неви­димых при обычных методах микроскопирования. Как уже указывалось, в обычном световом микроскопе необходимая контрастность структур дости­гается с помощью окрашивания. Метод фазового контраста обеспечивает контрастность изучаемых неокрашенных структур за счет специальной коль­цевой диафрагмы, помещаемой в конденсоре, и так называемой фазовой пластинки, находящейся в объективе. Такая конструкция оптики микроско­па дает возможность преобразовать не воспринимаемые глазом фазовые изменения прошедшего через неокрашенный препарат света в изменение его амплитуды, т.е. яркости получаемого изображения. Повышение контра­ста позволяет видеть все структуры, различающиеся по показателю прелом­ления. Разновидностью метода фазового контраста является метод фазово-темнополъного контраста, дающий негативное по сравнению с позитивным фазовым контрастом изображение.

Микроскопия в темном поле. В темнопольном микроскопе только свет, который дает дифракцию структур в препарате, достигает объектива. Про­исходит это благодаря наличию в микроскопе специального конденсора, который освещает препарат строго косым светом; лучи от осветителя на­правляются сбоку. Таким образом, поле выглядит темным, а мелкие части­цы в препарате отражают свет, который далее попадает в объектив. Разре­шение этого микроскопа не может быть лучше, чем у светлопольного мик­роскопа, так как используется такая же длина волны. Но здесь достигается больший контраст. Он используется для изучения живых объектов, автора­диографических объектов, например зерен серебра, которые выглядят свет­лыми на темном поле. В клинике его применяют для изучения кристаллов в моче (мочевая кислота, оксалаты), для демонстрации спирохет, в частно­сти treponema pallidum , вызывающей сифилис и др.

Интерференционная микроскопия. Разновидностями фазово-контрастного микроскопа являются интерференционный микроскоп, который предназначен для количественного определения массы ткани, и диффе­ренциальный интерференционный микроскоп (с оптикой Номарского), который специально используют для изучения рельефа по­верхности клеток и других биологических объектов.

В интерференционном микроскопе пучок света от осветителя разделя­ется на два потока: один проходит через объект и изменяет по фазе колеба­ния, второй идет, минуя объект. В призмах объектива оба пучка соединяют­ся и интерферируют между собой. В результате строится изображение, в котором участки микрообъекта разной толщины и плотности различаются по степени контрастности. Проведя количественную оценку изменений, определяют концентрацию и массу сухого вещества.

Фазово-контрастный и интерференционный микроскопы позволяют изучать живые клетки. В них используется эффект интерференции, возника­ющий при комбинации двух наборов волн, который создает изображение микроструктур. Преимуществом фазово-контрастной, интерференционной и темнопольной микроскопии является возможность наблюдать клетки в про­цессе движения и митоза. При этом регистрация движения клеток может производиться с помощью цейтраферной (покадровой) микрокиносъемки.

Поляризационная микроскопия. Поляризационный микроскоп является модификацией светового микроскопа, в котором установлены два поляри­зационных фильтра - первый (поляризатор) между пучком света, и объек­том, а второй (анализатор) между линзой объектива и глазом. Через пер­вый фильтр свет проходит только в одном направлении, второй фильтр имеет главную ось, которая располагается перпендикулярно первому филь­тру, и он не пропускает свет. Получается эффект темного поля. Оба фильт­ра могут вращаться, изменяя направление пучка света. Если анализатор повернуть на 90° по отношению к поляризатору, то свет проходить через них не будет. Структуры, содержащие продольно ориентированные молеку­лы (коллаген, микротрубочки, микрофиламенты), и кристаллическиеструктуры (в клетках Лейдига 1) при изменении оси вращения проявляются как светящиеся. Способность кристаллов или паракристаллических образо­ваний к раздвоению световой волны на обыкновенную и перпендикуляр­ную к ней называется двойным лучепреломлением. Такой способностью об­ладают фибриллы поперечнополосатых мышц.

Электронная микроскопия. Большим шагом вперед в развитии техники микроскопии были создание и применение электронного микроскопа (см. рис. 1, Б). В электронном микроскопе используется поток электронов с бо­лее короткими, чем в световом микроскопе, длинами волн. При напряже­нии 50 000 В длина волны электромагнитных колебаний, возникающих при движении потока электронов в вакууме, равна 0,0056 нм. Теоретически рас­считано, что разрешаемое расстояние в этих условиях может быть около 0,002 нм, или 0,000002 мкм, т.е. в 100 000 раз меньше; чем в световом мик­роскопе. Практически в современных электронных микроскопах разрешае­мое расстояние составляет около 0,1-0,7 нм.

В настоящее время широко используются трансмиссионные (просвечивающие) электронные микроскопы (ТЭМ) и ска­нирующие (растровые) электронные микроскопы (СЭМ). С помощью ТЭМ можно получить лишь плоскостное изображение изучае­мого микрообъекта. Для получения пространственного представления о структурах применяют СЭМ, способные создавать трехмерное изображение. Растровый электронный микроскоп работает по принципу сканирования электронным микрозондом исследуемого объекта, т. е. последовательно «ощупывает» остро сфокусированным электронным пучком отдельные точ­ки поверхности. Для исследования выбранного участка микрозонд двигает­ся по его поверхности под действием отклоняющих катушек (принцип те­левизионной развертки). Такое исследование объекта называется сканиро­ванием (считыванием), а рисунок, по которому движется микрозонд, - растром. Полученное изображение выводится на телевизионный экран, электронный луч которого движется синхронно с микрозондом.

Главными достоинствами растровой электронной микроскопии являют­ся большая глубина резкости, широкий диапазон непрерывного изменения увеличения (от десятков до десятков тысяч раз) и высокая разрешающая способность.

Электронная микроскопия по методу замораживания - скалывания применяется для изучения деталей строения мембран и межклеточных соединений. Для изготов­ления сколов клетки замораживают при низкой температуре (-160 °С). При иссле­довании мембраны плоскость скола проходит через середину бислоя липидов. Далее на внутренние поверхности полученных половинок мембран напыляют металлы (платина, палладий, уран), изучают их с помощью ТЭМ и микрофотографии.

Метод криоэлектронной микроскопии. Быстро замороженный тонкий слой (око­ло 100 нм) образца ткани помещают на микроскопическую решетку и исследуют в вакууме микроскопа при -160 С С.

Метод электронной микроскопии «замораживание - травление» применяют для изучения внешней поверхности мембран клеток. После быстрого замораживания клеток при очень низкой температуре блок раскалывают лезвием ножа. Образующие­ся кристаллы льда удаляют путем возгонки воды в вакууме. Затем участки клеток оттеняют, напыляя тонкую пленку тяжелого металла (например, платины). Метод позволяет выявлять трехмерную организацию структур.

Таким образом, методы замораживания - скалывания и замораживания - травления позволяют изучать нефиксированные клетки без образования в них арте­фактов, вызываемых фиксацией.

Методы контрастирования солями тяжелых металлов позволяют ис­следовать в электронном микроскопе отдельные макромолекулы - ДНК, крупных белков (например, миозин). При негативном контрастировании изучают агрегаты макромолекул (рибосомы, вирусы) либо белковые филаменты (актиновые нити).

Электронная микроскопия ультратонких срезов, полученных методом криоультра-микротомии. При этом методе кусочки тканей без фиксации и заливки в твердые среды быстро охлаждают в жидком азоте при температуре -196 °С. Это обеспечива­ет торможение метаболических процессов клеток и переход воды из жидкой фазы в твердую. Далее блоки режут на ультрамикротоме при низкой температуре. Такой метод приготовления срезов обычно используют для определения активности фер­ментов, а также для проведения иммунохимических реакций. Для выявления анти­генов применяют антитела, связанные с частицами коллоидного золота, локализа­цию которого легко выявить на препаратах.

Методы сверхвысоковольтной микроскопии. Используют электронные микроско­пы с ускоряющим напряжением до 3 000 000 В. Преимущество этих микроскопов в том, что они позволяют исследовать объекты большой толщины (1-10 мкм), так как при высокой энергии электронов они меньше поглощаются объектом. Стерео­скопическая съемка позволяет получать информацию о трехмерной организации внутриклеточных структур с высоким разрешением (около 0,5 нм).

Рентгеноструктурный анализ. Для изучения структуры макромолекул на ато­марном уровне применяют методы с использованием рентгеновских лучей, имеющих длину волны около 0,1 нм (диаметр атома водорода). Молекулы, образующие крис­таллическую решетку, изучают с помощью дифракционных картин, которые регист­рируют на фотопластинке в виде множества пятен различной интенсивности. Интен­сивность пятен зависит от способности различных объектов в решетке рассеивать излучение. Положение пятен в дифракционной картине зависит от положения объек­та в системе, а их интенсивность свидетельствует о его внутренней атомной структуре.

Методы исследования фиксированных клеток и тканей

Исследование фиксированных клеток и тканей. Основным объектом ис­следования являются гистологические препараты, приготовленные из фик­сированных структур. Препарат может представлять собой мазок (напри­мер, мазок крови, костного мозга, слюны, цереброспинальной жидкости и др.), отпечаток (например, селезенки, тимуса, печени), пленку из ткани (например, соединительной или брюшины, плевры, мягкой мозго­вой оболочки), тонкий срез. Наиболее часто для изучения используется срез ткани или органа. Гистологические препараты могут изучаться без спе­циальной обработки. Например, приготовленный мазок крови, отпечаток, пленка или срез органа могут сразу рассматриваться под микроскопом. Но вследствие того, что структуры имеют"слабый контраст, они плохо выявля­ются в обычном световом микроскопе и требуется использование специаль­ных микроскопов (фазово-контрастные и др.). Поэтому чаще применяют специально обработанные препараты.

Процесс изготовления гистологического препарата для световой и элек­тронной микроскопии включает следующие основные этапы: 1) взятие материала и его фиксация, 2) уплотнение материала, 3) приготовление срезов, 4) окрашивание или контрастирование срезов. Для световой мик­роскопии необходим еще один этап - заключение срезов в бальзам или другие прозрачные среды (5). Фиксация обеспечивает предотвращение про­цессов разложения, что способствует сохранению целостности структур. Это достигается тем, что взятый из органа маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмие­вая кислота, специальные фиксирующие смеси), либо подвергают терми­ческой обработке. Под действием фиксатора в тканях и органах происходят сложные физико-химические изменения. Наиболее существенным из них является процесс необратимой коагуляции белков, вследствие которого жизнедеятельность прекращается, а структуры становятся мертвыми, фик­сированными. Фиксация приводит к уплотнению и уменьшению объема кусочков, а также к улучшению последующей окраски клеток и тканей.

Уплотнение кусочков, необходимое для приготовления срезов, произво­дится путем пропитывания предварительно обезвоженного материала пара­фином, целлоидином, органическими смолами. Более быстрое уплотнение достигается применением метода замораживания кусочков, например в жидкой углекислоте.

Приготовление срезов производится на специальных приборах - микро­томах (для световой микроскопии) и ультрамикротомах (для электронной микроскопии).

Окрашивание срезов (в световой микроскопии) или напыление их соля­ми металлов (в электронной микроскопии) применяют для увеличения кон­трастности изображения отдельных структур при рассматривании их в мик­роскопе. Методы окраски гистологических структур очень разнообразны и выбираются в зависимости от задач исследования. Гистологические краси­тели подразделяют на кислые, основные и нейтральные. В качестве примера можно привести наиболее известный основной краситель азур II , который окрашивает ядра в фиолетовый цвет, и кислый краситель - эозин, окрашивающий цитоплазму в розово-оранжевый цвет. Избиратель­ное сродство структур к определенным красителям обусловлено их хими­ческим составом и физическими свойствами. Структуры, хорошо окраши­вающиеся кислыми красителями, называются оксифильными (ацидофильны­ми, эозинофильными), а окрашивающиеся основными - базофильными. Структуры, воспринимающие как кислые, так и основные красители, яв­ляются нейтрофилъными (гетерофильными). Окрашенные препараты обычно обезвоживают в спиртах возрастающей крепости и просветляют в ксилоле, бензоле, толуоле или некоторых маслах. Для длительного сохранения обез­воженный гистологический срез заключают между предметным и по­кровным стеклами в канадский бальзам или другие вещества. Готовый гис­тологический препарат может быть использован для изучения под микро­скопом в течение многих лет. Для электронной микроскопии срезы, полу­ченные на ультрамикротоме, помещают на специальные сетки, контрас­тируют солями марганца, кобальта и др., после чего просматривают в микроскопе и фотографируют. Полученные микрофотографии служат объек­том изучения наряду с гистологическими препаратами.

Методы исследования живых клеток и тканей

Изучение живых клеток и тканей позволяет получить наиболее полную информацию об их жизнедеятельности - проследить движение, процессы деления, разрушения, роста, дифференцировки и взаимодействия клеток, продолжительность их жизненного цикла, реактивные изменения в ответ на действие различных факторов.

Прижизненные исследования клеток в организме (in vivo ). Одним из при­жизненных методов исследования является наблюдение структур в живом организме. С помощью специальных просвечивающих микроскопов-иллюми­наторов, например, можно изучать в динамике циркуляцию крови в мик­рососудах. После проведения анестезии у животного объект исследования (например, брыжейка кишечника) выводят наружу и рассматривают в мик­роскопе, при этом ткани должны постоянно увлажняться изотоническим раствором натрия хлорида. Однако длительность такого наблюдения огра­ничена. Лучшие результаты дает метод вживления прозрачных ка­мер в организм животного.

Наиболее удобным органом для вживления таких камер и последующего на­блюдения является ухо какого-либо животного (например, кролика). Участок уха с прозрачной камерой помещают на предметный столик микроскопа и в этих услови­ях изучают динамику изменения клеток и тканей в течение продолжительного вре­мени. Таким образом могут изучаться процессы выселения лейкоцитов из кровенос­ных сосудов, различные стадии образования соединительной ткани, капилляров, нервов и другие процессы. В качестве естественной прозрачной камеры можно ис­пользовать глаз экспериментальных животных. Клетки, ткани или образцы органов помещают в жидкость передней камеры глаза в угол, образованный роговицей и радужкой, и могут наблюдаться через прозрачную роговицу. Таким образом была произведена трансплантация оплодотворенной яйцеклетки и прослежены ранние стадии развития зародыша. Обезьянам были пересажены небольшие кусочки матки и изучены изменения слизистой оболочки матки в различные фазы менструального цикла.

Широкое применение нашел метод трансплантации клеток кро­ви и костного мозга от здоровых животных-доноров животным-реципиен­там, подвергнутым смертельному облучению. Животные-реципиенты после трансплантации оставались живыми вследствие приживления донорских клеток, образующих в селезенке колонии кроветворных клеток. Исследова­ние числа колоний и их клеточного состава позволяет выявлять количество родоначальных кроветворных клеток и различные стадии их дифференци­ровки. С помощью метода колониеобразования установлены источники раз­вития для всех клеток крови.

Витальное и суправитальное окрашивание. При витальном (прижиз­ненном) окрашивании клеток и тканей краситель вводят в организм жи­вотного, при этом он избирательно окрашивает определенные клетки, их органеллы или межклеточное вещество. Например, с помощью трипанового синего или литиевого кармина выявляют фагоциты, а с помощью ализа­рина - новообразованный матрикс кости.

Суправитальным окрашиванием называют окрашивание живых клеток, выделенных из организма. Таким способом выявляют молодые фор­мы эритроцитов - ретикулоциты крови (краситель бриллиантовый крези-ловый голубой), митохондрии в клетках (краситель зеленый янус), лизосомы (краситель нейтральный красный).

Исследования живых клеток и тканей в культуре (in vitro ). Этот метод является одним из самых распространенных. Выделенные из организма че­ловека или животных клетки, маленькие образцы тканей или органов по­мещают в стеклянные или пластмассовые сосуды, содержащие специальную питательную среду, - плазму крови, эмбриональный экстракт, а так­же искусственные среды. Различают суспензионные культуры (клет­ки взвешены в среде), тканевые, органные и монослойные культуры (эксплантированные клетки образуют на стекле сплошной слой). Обеспечи­ваются стерильность среды и температура, соответствующая температуре тела. В этих условиях клетки в течение длительного времени сохраняют ос­новные показатели жизнедеятельности - способность к росту, размноже­нию, дифференцировке, движению. Такие культуры могут существовать многие дни, месяцы и даже годы, если обновлять среду культивирования и пересаживать жизнеспособные клетки в другие сосуды. Некоторые виды клеток благодаря изменениям в их геноме могут сохраняться и размножать­ся в культуре, образуя непрерывные клеточные линии. В разработку методов культивирования клеток и тканей большой вклад внесли А. А. Максимов, А. В. Румянцев, Н. Г. Хлопин, А. Д. Тимофеевский, Ф. М. Лазаренко. В на­стоящее время получены клеточные линии фибробластов, миоцитов, эпи-телиоцитов, макрофагов и др., которые существуют многие годы.

Использование метода культивирования позволило выявить ряд зако­номерностей дифференцировки, злокачественного перерождения клеток, клеточных взаимодействий, взаимодействий клеток с вирусами и микроба­ми. Показана возможность хрящевых клеток формировать в культуре меж­клеточное вещество и способность клеток надпочечников продуцировать гормоны. Культивирование эмбриональных тканей и органов дало возмож­ность проследить развитие кости, кожи и других органов. Разработана мето­дика культивирования нервных клеток.

Особую значимость метод культуры тканей имеет для проведения эк­спериментальных наблюдений на клетках и тканях человека. Взятые из организма человека клетки при пункции или биопсии могут в культуре тканей использоваться для определения пола, наследственных заболева­ний, злокачественного перерождения, выявления действия ряда токсич­ных веществ.

В последние годы клеточные культуры широко применяются для гиб­ридизации клеток.

Разработаны методы разделения тканей на клетки, выделение отдельных типов клеток и их культивирования.

Вначале ткань превращают в суспензию клеток путем разрушения межклеточных контактов и межклеточного матрикса с помощью протеолитических ферментов (трип­син, коллагеназа) и соединений, связывающих Са 2+ (с помощью ЭДТА - этиленди-аминтетрауксусной кислоты). Далее полученную суспензию разделяют на фракции клеток различных типов с помощью центрифугирования, позволяющего отделить более тяжелые клетки от легких, большие от малых, или путем прилипания клеток к стеклу или пластмассе, способность к которому у различных типов клеток неодина­кова. Для обеспечения специфического прилипания клеток к поверхности стекла ис­пользуют антитела, специфически связывающиеся с клетками одного типа. Прилип­шие клетки затем отделяют, разрушая матрикс ферментами, при этом получают взвесь однородных клеток. Более тонким методом разделения клеток является мече-ние антителами, связанными с флюоресцирующими красителями. Меченые клетки отделяются от немеченых с помощью сортера (электронного флюоресцентно-активи­руемого клеточного анализатора). Клеточный анализатор сортирует в 1 с около 5000 клеток. Выделенные клетки можно изучать в условиях культивирования.

Метод культивирования клеток позволяет изучать их жизнедеятельность, раз­множение, дифференцировку, взаимодействие с другими клетками, влияние гор­монов, факторов роста и др.

Культуры обычно готовят из суспензии клеток, полученной вышеописанным методом диссоциации ткани. Большинство клеток неспособны расти в суспензии, им необходима твердая поверхность, в качестве которой используют поверхность пластиковой культуральной чашки, иногда с компонентами внеклеточного матрик-са, например коллагена. Первичными культурами называют культуры, приготовлен­ные непосредственно после первого этапа фракционирования клеток, вторичны­ми - культуры клеток, пересаженные из первичных культур в новую среду. Можно последовательно перевивать клетки в течение недель и месяцев, при этом клетки сохраняют характерные для них признаки дифференцировки (например, клетки эпителия образуют слои). Исходным материалом для клеточных культур обычно слу­жат эмбриональные ткани и ткани новорожденных.

В качестве питательных сред используют смеси солей, аминокислот, витами­нов, лошадиной сыворотки, экстракт куриных эмбрионов, эмбриональную сыво­ротку и др. В настоящее время разработаны специальные среды для культивирова­ния различных типов клеток. Они содержат один или несколько белковых факторов роста, необходимых клеткам для жизнедеятельности и размножения. Например, для роста нервных клеток необходим фактор роста нервов (ФРН).

У большинства клеток в культуре наблюдается определенное число делений (50-100), а затем они погибают. Иногда в культуре появляются мутантные клетки, которые размножаются бесконечно и образуют клеточную линию (фибробласты, эпителиоциты, миобласты и др.). Мутантные клетки отличаются от раковых клеток, также способных к непрерывному делению, но могущих расти без прикрепления к твердой поверхности. Раковые клетки в культуральных чашках образуют более плот­ную популяцию, чем популяции обычных клеток. Аналогичное свойство можно вызвать экспериментально у нормальных клеток путем трансформации их опухоле-родными вирусами или химическими соединениями, при этом образуются неопла-стически трансформированные клеточные линии. Клеточные линии нетрансформи-рованных и трансформированных клеток можно длительно сохранять при низких температурах (-70 °С). Генетическую однородность клеток усиливают клонировани­ем, когда из одной клетки при ее последовательном делении получают большую колонию однородных клеток. Клон - это популяция клеток, происходящих из од­ной клетки-предшественника.

Клеточные гибриды. При слиянии двух клеток различных типов образу­ется гетерокарион - клетка с двумя ядрами. Для получения гетерока-риона суспензию клеток обрабатывают полиэтиленгликолем или инактиви-рованными вирусами для повреждения плазмолемм клеток, после чего клет­ки способны к слиянию. Например, неактивное ядро эритроцита курицы становится активным (синтез РНК, репликация ДНК) при слиянии кле­ток и переносе в цитоплазму другой клетки, растущей в культуре ткани. Ге­терокарион способен к митозу, в результате чего образуется гибридная клет­ка. Оболочки ядер у гетерокариона разрушаются, и их хромосомы объеди­няются в одном большом ядре.

Клонирование гибридных клеток приводит к образованию гибридных клеточных линий, которые используются для изучения генома. Например, в гибридной клеточной линии «мышь - человек» установлена роль хромо­сомы 11 человека в синтезе инсулина.

Гибридомы. Клеточные линии гибридом используют для получения мо-ноклональных антител. Антитела вырабатываются плазмоцитами, которые образуются из В-лимфоцитов при иммунизации. Определенный вид анти­тел получают при иммунизации мышей конкретными антигенами. Если клонировать такие иммунизированные лимфоциты, то можно получить большое количество однородных антител. Однако время жизни В-лимфоци­тов в культуре ограничено. Поэтому производят их слияние с «бессмертны­ми» опухолевыми клетками (В-лимфомы). В результате образуются гибридо мы (гибрид-клетка, с геномом от двух разных клеток; ома - окончание в названиях опухолей). Такие гибридомы способны размножаться длительно в культуре и синтезировать антитела определенного вида. Каждый клон гиб­ридомы является источником моноклональных антител. Все молекулы анти­тел данного вида обладают одинаковой специфичностью связывания анти­генов. Можно получать моноклональные антитела против любого белка, содержащегося в клетке, и использовать их для установления локализации белков в клетке, а также для выделения белка из смеси (очистка белков), что позволяет исследовать структуру и функцию белков. Моноклональные антитела применяют также в технологии клонирования генов.

Антитела можно использовать для изучения функции различных моле­кул, вводя их через плазмолемму непосредственно в цитоплазму клеток тонкой стеклянной пипеткой. Например, введение антител к миозину в цитоплазму оплодотворенной яйцеклетки морского ежа останавливает раз­деление цитоплазмы.

Технология рекомбинантных ДНК. Классические генетические методы позволяют изучать функцию генов, анализируя фенотипы мутантных орга­низмов и их потомства. Технология рекомбинантных ДНК дополняет эти методы, позволяет проводить детальный химический анализ генетического материала и получать в больших количествах клеточные белки.

Методы гибридизации широко используют в современной биологии для изучения структуры генов и их экспрессии.

Методы исследования химического состава и метаболизма клеток и тканей

Для изучения химического состава биологических структур - локали­зации веществ, их концентрации и динамики в процессах метаболизма при­меняют специальные методы исследования.

Цито- и гистохимические методы. Эти методы позволяют выявлять лока­лизацию различных химических веществ в структурах клеток, тканей и ор­ганов - ДНК, РНК, белков, углеводов, липидов, аминокислот, минераль­ных веществ, витаминов, активность ферментов. Эти методы основаны на специфичности реакции между химическим реактивом и субстратом, вхо­дящим в состав клеточных и тканевых структур, и окрашивании продуктов химических реакций. Для повышения специфичности реакции часто при­меняют ферментативный контроль. Например, для выявления в клетках ри­бонуклеиновой кислоты (РНК) часто используют галлоцианин - краситель с основными свойствами, а наличие РНК подтверждают контрольной обра­боткой рибонуклеазой, расщепляющей РНК. Галлоцианин окрашивает РНК в сине-фиолетовый цвет. Если срез предварительно обработать рибонуклеа­зой, а затем окрасить галлоцианином, то отсутствие окрашивания подтверж­дает наличие в структуре рибонуклеиновой кислоты. Описание многочислен­ных цито- и гистохимических методов дается в специальных руководствах.

В последние годы сочетание гистохимических методов с методом элек­тронной микроскопии привело к развитию нового перспективного направ­ления - электронной гистохимии. Этот метод позволяет изучать ло­кализацию различных химических веществ не только на клеточном, но и на субклеточном и молекулярном уровнях.

Для изучения макромолекул клеток используют очень чувствительные методы с применением радиоактивных изотопов и антител, позволяющие обнаружить даже небольшое содержание молекул (менее 1000).

Радиоактивные изотопы при распаде ядра испускают заряженные части­цы (электроны) или излучение (например, гамма-лучи), которые можно зарегистрировать в специальных приборах. Радиоактивные изотопы исполь­зуют в методе радиоавтографии. Например, с помощью радиоизотопов 3 Н-тимидина исследуют ДНК ядра, с помощью 3 Н-уридина - РНК.

Метод радиоавтографии. Этот метод дает возможность наиболее полно изучить обмен веществ в разных структурах. В основе метода лежит исполь­зование радиоактивных элементов (например, фосфора - 32 Р, углерода - 14 С, серы - 35 S , водорода - 3 Н) или меченных ими соединений. Радиоак­тивные вещества в гистологических срезах обнаруживают с помощью фото­эмульсии, которую наносят на препарат и затем проявляют. В участках пре­парата, где фотоэмульсия соприкасается с радиоактивным веществом, про­исходит фотореакция, в результате которой образуются засвеченные участ­ки (треки). Этим методом можно определять, например, скорость включе­ния меченых аминокислот в белки, образование нуклеиновых кислот, об­мен йода в клетках щитовидной железы и др.

Методы иммунофлюоресцентного анализа. Применение антител. Антите­ла - защитные белки, вырабатываемые плазмоцитами (производными В-лимфоцитов) в ответ на действие чужеродных веществ (антигенов). Ко­личество различных форм антител достигает миллиона. Каждое антитело имеет участки для «узнавания» молекул, вызвавших синтез этого антитела. В связи с высокой специфичностью антител в отношении антигенов они могут быть использованы для выявления любых белков клетки. Для выявле­ния локализации белков антитела окрашивают флюоресцирующими краси­телями, а затем клетки изучают с помощью флюоресцентной микроскопии. Антитела можно использовать также для изучения антигенов на ультра­структурном уровне с помощью электронного микроскопа. Для этого анти­тела метят электронно-плотными частицами (микросферы коллоидного зо­лота). Для усиления специфичности реакции применяют моноклональные антитела, образуемые линией клеток, - клонами, полученной методом гибридом из одной клетки. Метод гибридом позволяет получать монокло­нальные антитела с одинаковой специфичностью и в неограниченных ко­личествах.

Методы иммунофлюоресцентного анализа широко и эффективно ис­пользуются в современной гистологии. Эти методы применяются для изуче­ния процессов дифференцировки клеток, выявления в них специфических химических соединений и структур. Они основаны на реакциях антиген - антитело. Каждая клетка организма имеет специфический антигенный со­став, который главным образом определяется белками. Продукты реакции можно окрашивать и выявлять в люминесцентном микроскопе, например выявление актина и тубулина в клетке с помощью метода иммунофлюорес­центного анализа (см. главу IV ).

Современные методы исследований позволяют проводить анализ хими­ческого состава различных структурных компонентов клеток, как фиксиро­ванных, так и живых. Изучение отдельных внутриклеточных структур стало возможным после разработки технологий фракционирования клеточного содержимого.

Фракционирование клеточного содержимого

Фракционировать структуры и макромолекулы клеток можно различны­ми методами - ультрацентрифугированием, хроматографией, электрофо­резом. Подробнее эти методы описаны в учебниках биохимии.

Ультрацентрифугирование. С помощью этого метода клетки можно разделить на органеллы и макромолекулы. Вначале разрушают клет­ки осмотическим шоком, ультразвуком или механическим воздействием. При этом мембраны (плазмолемма, эндоплазматический ретикулум) распадаются на фрагменты, из которых формируются мельчайшие пу­зырьки, а ядра и органеллы (митохондрии, аппарат Гольджи, лизосомы и пероксисомы) сохраняются интактными и находятся в образующей сус­пензии.

Для разделения вышеуказанных компонентов клетки применяют высо­коскоростную центрифугу (80 000-150 000 оборотов/мин). Вначале оседают (седиментируют) на дне пробирки более крупные части (ядра, цитоскелет). При дальнейшем увеличении скоростей центрифугирования надосадочных фракций последовательно оседают более мелкие частицы - сначала мито­хондрии, лизосомы и пероксисомы, затем микросомы и мельчайшие пу­зырьки и, наконец, рибосомы и крупные макромолекулы. При центрифу­гировании различные фракции оседают с различной скоростью, образуя в пробирке отдельные полосы, которые можно выделить и исследовать. Фрак­ционированные клеточные экстракты (бесклеточные системы) широко ис­пользуют для изучения внутриклеточных процессов, например для изуче­ния биосинтеза белка, расшифровки генетического кода и др.

Хроматография широко используется для фракционирования бел­ков.

Электрофорез позволяет разделить белковые молекулы с различным зарядом при помещении их водных растворов (или в твердом пористом матриксе) в электрическом поле.

Методы хроматографии и электрофореза применяют для анализа пеп­тидов, получаемых при расщеплении белковой молекулы, и получения так называемых пептидных карт белков. Подробно эти методы описаны в учеб­никах биохимии.

Изучение химического состава живых клеток. Для изучения распределе­ния веществ и их метаболизма в живых клетках используют методы ядерно­го магнитного резонанса и микроэлектродную технику.

Ядерный магнитный резонанс (ЯМР) позволяет изучать малые моле­кулы низкомолекулярных веществ. Образец ткани содержит атомы в различных мо­лекулах и в различном окружении, поэтому он будет поглощать энергию на различ­ных резонансных частотах. Диаграмма поглощения на резонансных частотах для дан­ного образца составит его спектр ЯМР. В биологии сигнал ЯМР от протонов (ядер водорода) широко используется для изучения белков, нуклеиновых кислот и др. Для изучения макромолекул внутри живой клетки часто применяют изотопы 3 Н, 13 С, 35 К, 31 Р для получения сигнала ЯМР и слежения за его изменением в процессе жиз­недеятельности клетки. Так, 3| Р используется для изучения мышечного сокращения - изменений содержания в тканях АТФ и неорганического фосфата. Изотоп 13 С по­зволяет с помощью ЯМР исследовать многие процессы, в которых участвует глю­коза. Использование ЯМР ограничено его низкой чувствительностью: в 1 г живой ткани должно содержаться не менее 0,2мм исследуемого вещества. Преимуществом метода является его безвредность для живых клеток.

Микроэлектродная техника. Микроэлектроды представляют собой стеклянные трубочки, заполненные электропроводным раствором (обычно раствор КС1 в воде), диаметр конца которых измеряется долями микрона. Кончик такой тру­бочки можно вводить в цитоплазму клетки через плазмолемму и определять кон­центрацию ионов Н + , Na + , К + , С1", Са 2+ , Mg 2+ , разность потенциалов на плазмо-лемме, а также производить инъекцию молекул в клетку. Для определения концен­трации конкретного иона используют ионселективные электроды, которые запол­няют ионообменной смолой, проницаемой только для данного иона. В последние годы микроэлектродную технику применяют для изучения транспорта ионов через специальные ионные каналы (специализированные белковые каналы) в плазмолем-ме. При этом используют микроэлектрод с более толстым кончиком, который плот­но прижимают к соответствующему участку плазмолеммы. Этот метод позволяет ис­следовать функцию одиночной белковой молекулы. Изменение концентрации ионов внутри клетки можно определить с помощью люминесцирующих индикаторов. На­пример, для изучения внутриклеточной концентрации Са 2+ используют люминес­центный белок акварин (выделен из медузы), который излучает свет в присутствии ионов Са 2+ и реагирует на изменение концентрации последнего в пределах 0,5- 10 мкМ. Синтезированы также флюоресцентные индикаторы, прочно связывающи­еся с Са 2+ . Создание различных новых типов внутриклеточных индикаторов и совре­менных способов анализа изображений позволяет точно и быстро определять внут­риклеточную концентрацию многих низкомолекулярных веществ.

Количественные методы

В настоящее время наряду с качественными методами разработаны и применяются количественные гистохимические методы опре­деления содержания различных веществ в клетках и тканях. Особенность количественно-гистохимических (в отличие от биохимических) методов исследования заключается в возможности изучения концентрации и содер­жания химических компонентов в конкретных структурах клеток и тканей.

Цитоспектрофотометрия - метод количественного изучения внутрикле­точных веществ по их абсорбционным спектрам.

Цитоспектрофлюориметрия - метод количественного изучения внутри­клеточных веществ по спектрам их флюоресценции или по интенсивности флюоресценции на одной заранее выбранной волне (цитофлюориметрия).

Современные микроскопы - цитофлюориметры позволяют обнаружить в различных структурах малые количества вещества (до 10~ 14 -10~ 16 г) и оце­нить локализацию исследуемых веществ в микроструктурах.

Методы анализа изображения клеточных и тканевых структур


Полученные изображения микрообъектов в микроскопе, на телевизи­онном экране дисплея, на электронных микрофотографиях могут подвер­гаться специальному анализу - выявлению морфометрических, денситомет-рических параметров и их статистической обработке.

Морфометрические методы позволяют определять с помощью специаль­ных сеток (Е. Вейбеля, А. А. Глаголева, С. Б. Стефанова) число любых структур, их площади, диаметры и др. В частности, в клетках могут быть измерены площади ядер, цитоплазмы, их диаметры, ядерно-цитоплазмати-ческие отношения и др. Существуют ручная морфометрия и авто­матизированная морфометрия, при которой все параметры изме­ряются и регистрируются в приборе автоматически.

В последние годы все большее распространение получают автоматизи­ рованные системы обработки изображений (АСОИз), позволяющие наиболее эффективно реализовать перечисленные выше количественные методы для изучения клеток и тканей. При этом аналитические возможности количе­ственной микроскопии дополняются методами анализа и распознавания образцов, основанными на обработке с помощью электронных вычисли­тельных машин (ЭВМ) информации, извлекаемой из изображений клеток и тканей. По существу можно говорить об устройствах, не только усилива­ющих оптические возможности зрительного анализатора человека, но и многократно расширяющих его аналитические возможности. Высказывается мнение, что АСОИз совершает такой же переворот в морфологии, какой около 300 лет назад произошел благодаря изобретению светового, а около 50 лет назад - электронного микроскопа, поскольку они не только неиз­меримо повышают производительность труда исследователя и не только объективизируют наблюдения, но и позволяют получать новую информа­цию о невыявляемых ранее процессах, численно моделировать и прогнози­ровать их развитие в клетках и тканях.

Вместе с тем участие в эксперименте ЭВМ требует от исследователя нового подхода к его проведению, владения навыками составления алго­ритмов процесса исследования, точности рассуждений и в конечном итоге повышения научно-методического уровня исследования.

Одним из методов, существенно расширивших число решаемых морфо­логических задач, является оптико-структурный машинный анализ (ОСМА), предложенный в 1965 г. К.М.Богдановым. В 1978 г. автор метода был удосто­ен Государственной премии СССР. С появлением ОСМА сделан качествен­но новый шаг в разработке единой методологии количественного анализа микроструктур на основе статистических характеристик. В последнее время ОСМА нашел эффективное применение в исследовательской практике и народном хозяйстве.

На рис. 2 представлена созданная в нашей стране фирмой «ЛОМО» ав­томатизированная система обработки изображений «Протва-МП». Система предназначена для проведения комплексных исследований клеток и тканей с использованием методов абсорбционной, флюоресцентной микроскопии и радиоавтографии.

Входящий в состав системы специальный сканирующий оптический или электронный микроскоп осуществляет последовательный просмотр изображения препарата по двум координатам, преобразуя его в цифровую форму, и вводит в ЭВМ, которая в свою очередь производит цифровую обработку изображения и выдает информацию о геометрических и других характеристиках анализируемого объекта.

С помощью цветного дисплея исследователь может «препарировать» изображе­ние, выделяя лишь те структурные составляющие, которые его интересуют. Входя­щие в состав ЭВМ емкие накопители информации на магнитных дисках или лентахпозволяют запоминать как сами изображения, так и результаты их обработки для последующего хранения и документирования

Использование методов автоматизированного анализа микрообъектов рассмотрим на примере обработки изображения лейкоцита крови (рис 3) Сканирующий микроскоп-фотометр позволяет построчно «просматривать» значения оптической плотности с шагом, заданным исследователем В ре­зультате оптический сигнал, соответствующий оптической плотности объекта, преобразуется в цифровую форму Полученная цифровая матри­ца подлежит препаровке с помощью специального математического аппа­рата

Вначале убирается фон и вычленяется «чистый» объект - изображение клетки (1а), затем из изображения клетки выделяется любая интересующая исследователя деталь, например цитоплазма (16) и ядро (I порядка среднее и ин­тегральное значение оптической плотности, дисперсия, асимметрия, эксцесс и др По изображению объекта получают морфометрические параметры пло­щадь, периметр, диаметр, ядерно-цитоплазматическое отношение, коэффициент формы и др

Следующим этапом обработки изображения является построение двухмер­ных диаграмм взаимозависимости оптической плотности для всей клетки (см рис 3), ее цитоплазмы (Шб) и ядра (Шв) Так же, как и в первом случае, на диа­грамме всей клетки (Ша) можно выделить фазу цитоплазмы и ядра Данные диа­граммы позволяют рассчитать гистограммные параметры II порядка гомоген­ность, локальный контраст, энтропию и др.


Рис. З. Автоматизированная обработка изображения клетки (схема).

Изображение лейкоцита (а), его цитоплазмы (б) и ядра (в). I - цифровое изображение; II - гистограммы оптической плотности; III - двухмерные гистограммы зависимости значений оптической плотности.

Полученные таким образом параметры представляют многомерный «портрет» клетки и имеют конкретное числовое выражение. Они могут быть подвергнуты различным методам статистической обработки, позволяют предельно точно классифицировать микрообъекты, выявлять особенности их структуры, необнаруживаемые визуально.

Таким образом, применение новых методов исследований в гистологии, цитологии и эмбриологии позволяет выяснить общие закономерности орга­низации тканей и клеток, структурные основы биохимических процессов, определяющих функцию конкретных структурных компонентов клетки.

При подозрении на злокачественное заболевания точно выставить диагноз можно только после ряда обследований, самым главным из которых считается гистологическое исследование.

Под этим методом понимают микроскопическое изучение образца тканей из тела человека, полученных при биопсии или во время операционного вмешательства. Гистологию обязаны назначать практически всем пациентам, имеющим данные за развитие не только злокачественных, но и доброкачественных опухолей.

Цели гистологического метода исследования биопсийного материала

Гистологическое исследование назначается для решения сразу нескольких задач. Этот анализ необходим для:

  • Подтверждения или опровержения предполагаемого диагноза.
  • Определения ранней стадии тяжелых, в том числе и .
  • Изучения протекания патологического процесса в динамике.
  • Правильного выбора техники операции при необходимости удаления новообразований.
  • Дифдиагностики, позволяющей точно разделить две сходные по признакам патологии.
  • Определения структурных нарушений, образующихся в тканях в период лечения.

На сегодня хирургическое вмешательство, сеансы облучения и химиотерапия больным даже с уже явным протеканием злокачественного процесса без предварительно проведенной гистологии не назначаются.

Морфологическое изучение биоматериала позволяет подобрать адекватную схему терапии и при неопухолевых процессах.

Исследование востребовано в торакальной и абдоминальной хирургии, оториноларингологии, пульмонологии, гинекологии, гастроэнтерологии. При необходимости гистологическое лечение назначается пациентам с заболеваниями крови, мочеполовой системы.

Техника выполнения процедуры

Для пациентов с подозрением на злокачественную опухоль назначается прижизненное гистологическое исследование.

Биоматериал при необходимости можно получить практически из любого места человеческого тела, для этого используют:

  • Эксцизионную биопсию – получение тканей путем иссечения при проведении операции.
  • Пункционную биопсию. Проводится пункция патологического очага и при помощи иглы извлекается кусочек тканей.
  • Вырезание биоматериала из удаленных органов.
  • Щипцовую биопсию, то есть скусывание специальными щипцами необходимой части патологического образования. Этот вид биопсии возможен при проведении эндоскопического обследования – колоноскопии, эзофагогастродуоденоскопии, бронхоскопии.
  • Кюретаж – выскабливание патологического очага с органов с полостями или с тех полостей, которые образовались в результате злокачественного процесса.
  • Аспирационную биопсию – отсасывание при помощи шприца секрета из полого органа.

Метод получения биоптата в основном определяется заранее. Во время любой процедуры необходимо придерживаться правил взятия материала. Если их не полностью соблюдать, то возможны серьезные ошибки при проведении анализа.

Нередко лечащий или оперирующий врач планирует забор совместно с патологоанатомом, именно этот доктор имеет специализацию по гистологии. Не возбраняется и присутствие патологоанатома на операции, он укажет точное место забора образца тканей, определит его объем и метод фиксации.

Небольшой патологический очаг иссекают всегда полностью, захватывая кусочек здоровой окружающей ткани в 1-2 см шириной. Если операция назначена по поводу доброкачественной опухоли, то хирургическое вмешательство является радикальным. Хирургам необходимо при выборе техники манипуляции учитывать и косметический результат лечения.

Если технически невозможно убрать новообразование полностью, то объем иссеченного образца тканей должен быть максимально большим. Необходимо кусочек тканей брать там, где определяется зона отчетливой патологии.

В процессе иссечения нельзя забывать о том, что травматизация органов должна быть минимальной. Правильно требуется и иссекать ткани, если подобные воздействия слишком изменят структуру образца, то верно провести гистологию будет невозможно.

При использовании электроножа необходимо чтобы линия отсечения находилась на расстоянии не менее 2 мм от основного очага. К биоматериалу необходимо относиться с максимальной осторожностью – не допускается его сминать пальцами либо инструментами. Образец тканей удерживают только за здоровую полоску биоматериала.

Гистологическому исследованию по стандартам подвергается не только специально забранный биоматериал, но органы и ткани, удаленные при проведении операций.

Высокие требования предъявляются к оформлению документации. Врач-клиницист должен промаркировать биоптат, внести в протокол данные о характере операции, кратко описать удаленную часть органа или новообразование. В документах указывается, какие образцы тканей и сколько направляются в патологоанатомическое отделение.

Оперирующий хирург заполняет направление на гистологию, проверяет точность данных пациента на наклейке на лабораторной емкости с биоптатом. Наклейка должна находиться на боку самой емкости, так как не исключается ошибочная замена крышек у одинаковых банок. Обязательно следует следить за четкостью заполнения всех граф направления.

Разборчиво пишут инициалы пациента, его возраст, домашний адрес, обязательно помечают локализацию патологии, связь биоматериала с окружающими его связками, мышцами, органами.

Если есть возможность немедленной отправки забранного материала на исследование, то его не помещают в фиксирующий раствор. Но нужно учитывать, что длительно находиться в первоначальном виде биоптат не может, так как он подсыхает, и достоверный анализ не получается. Чем меньше по размерам образцы тканей, тем быстрее они теряют влагу.

В случае отсутствия возможности проведения гистологи немедленно биоптат прямо на месте его забора следует зафиксировать. Для фиксации используется 10% формалина, этого раствора должно быть в 15 раз больше по сравнению с отправляемым на анализ кусочком тканей.

Если биоптат отличается большими размерами, то рекомендуется для лучшего проникновения в него формалина сделать небольшие размеры, но так чтобы не изменить качество правильно забранного материала. Не допускается сквозное проведение надрезов и их количество должно быть самым минимальным.

Уносить или увозить материал в патологическое отделение должен только медработник с соответствующим допуском к этому виду работ. Отправка и получение материала фиксируются документально.

Запрещено делить биоматериал и отправлять его в разные лаборатории, так как многие опухоли отличаются неоднородностью строения. Поэтому гистология с разных мест будет по результатам неодинакова и это не позволит правильно выбрать верную тактику лечения.

Несколько образцов биоматериала из одного очага берется в том случае, если новообразование неоднородно или четкой границы опухоли нет.

Если материал для гистологии взять согласно всем правилам, то в зависимости от вида исследуемой ткани результат может быть готовы через 5-15 дней. Дольше всего проводится анализ костной ткани.

Результаты

Высокая точность гистологического анализа объясняется тем, что морфологическое исследование выполняется под микроскопом.

То есть у диагноста есть возможность вживую рассмотреть биоматериал и определить в нем патологические изменения без использования или УЗИ.

Перед непосредственном осмотре тканей под микроскопом она окрашивается специальным реактивом, что позволяет четко увидеть все отклонения от нормы. При исследовании гистологических биопрепаратов врач указывает микроскопические изменения, проводит анатомический анализ выявленных изменений.

В заключении врач может дать несколько вариантов результатов:

  • Ориентировочный ответ выставляется, когда полученные данные трактуются в пользу нескольких диагнозов. То есть необходима дополнительная дифдиагностика.
  • Заключительный ответ позволят на основании гистологии выставить точный диагноз.
  • Описательный ответ лаборант оставляет, если биоматериала недостаточно или нет достаточных сведений о характере заболевания.

В тех случаях, когда биопрепарата для изучения мало или материал забран так, что в нем больше здоровых тканей, выставляется «ложноотрицательный» результат. «Ложноположительный» ответ указывается, если в направлении отсутствуют клинико-лабораторные данные о пациенте.

Для того чтобы избежать ложных анализов требуется совместная работа патологоанатома и врача-клинициста. Врачи должны совместно тщательно обсудить все выявленные изменения при анализе, изучить историю болезни пациента.

В тех случаях, когда гистология назначается с диагностической целью, в заключении дают микроскопическое описание и пишут нозологическое заключение. При написании заключения в России руководствуются специальной медицинской номенклатурой.

На искажение результатов гистологии влияет неправильное фиксирование и хранение биоматериала, грубые ошибки при заборе биоптата. На точность анализа влияет и классификация диагноста. В норме в исследуемом образце клеточные изменения должны отсутствовать.

Исследование шейки матки и эндометрия

В гинекологии часто используется гистологическое исследование эндометриальных тканей. Оно позволяет установить нарушения в функционировании яичников и выявить ряд заболеваний, к ним относят и онкологию.

Тем пациенткам, у которых менструальный цикл не изменен, диагностическое выскабливание назначается за три дня до предполагаемой даты критических дней. При дисфункциональных кровотечениях чистку с забором материала для гистологии проводят, не дожидаясь остановки кровотечения.

Полученный биоматериал окрашивают, применяя гематоксилин или эозин. Проведение анализа позволяет выявить все особенности и изменения в эндометрии, определяется строение стромы и железистых клеток.

В норме железы в лютеиновую фазу менструального цикла приобретают пиловидную форму и немного расширяются.

Клетки желез должны иметь светлую цитоплазму и бледные ядра, в железах в обязательном порядке должен быть в норме обнаружен секрет.

Если при гистологическом исследовании соскоба с шейки матки определяется незначительное изменение, то это свидетельствует о развитии доброкачественной опухоли либо о воспалении. При обнаружении огромного числа измененных клеток не исключается предраковое состояние или злокачественный процесс.

Гистология родинки

Гистология родинки () назначается, в том случае, если имеются признаки, указывающие на возможное родимого пятна.

Это могут быть боли в месте родинки, быстрое увеличение ее в размерах, появление выделяющегося секрета или сукровицы, потемнение бледных невусов.

Для получения биоматериала необходимо беспокоящую родинку удалить полностью.

После чего ее помещают в фиксирующий раствор и направляют на исследование. Определение атипичных клеток с определенной структурой свидетельствует о злокачественном перерождении. При гистологическом исследовании родинки можно определить вид образования, характер и стадию воспалительного процесса.

Гистология родинки в специальных лабораторных отделениях проводится по направлению от врача или по желанию обратившегося к ним пациента. Раннее выявление злокачественных клеток позволит вовремя провести комплексное лечение, обеспечивающее полное выздоровление онкобольного.

Гистология прямой кишки

Материал для гистологического исследования тканей прямой кишки в основном берется при проведении колоноскопии. Используется два вида гистологического анализа:

  • Срочное исследование выполняется в течение 30-40 минут. Проводят его прямо во время операции на прямой кишке, и от полученных результатов зависит объем удаляемой опухоли вместе с окружающими тканями.
  • Плановое исследование занимает не менее 5 дней. Его данные по сравнению со срочным более достоверные.

Гистология биоптата из прямой кишки позволяет выяснить, имеется ли злокачественное перерождение клеток, как в нижних, так и в верхних отделах органа.

Цена

Стоимость гистологического исследования биопсийного материала зависит от категории сложности анализа:

  • Гистология биоматериала первой категории (сюда относят биоптат полученный при оперировании пациентов с неспецифически протекающим острым и хроническим воспалением) – стоит в пределах 2500-3000 тысяч рублей.
  • Гистология третьей категории (при отсутствии данных за онкологию) стоит около 3500 рублей.
  • Гистология четвертой категории стоит от 4-х тысяч рублей.

Нужно сказать, что в государственных учреждениях по направлению от врача гистологическое исследование делают бесплатно.