Гнилостная инфекция: лечение, симптомы и профилактика. Гнилостные микроорганизмы Можно ли пить молоко

В процессе обмена веществ микроорганизмы не только осуществляют синтез сложных белковых веществ собственной цитоплазмы, но и производят глубокое разрушение белковых соединений субстрата. Процесс минерализации органических белковых веществ микроорганизмами, протекающий с выделением аммиака или с образованием аммонийных солей, получил в микробиологии название гниения или аммонификации белков.

Таким образом, в строгом микробиологическом смысле гниение - это минерализация органического белка, хотя в повседневной жизни «гниением» называют целый ряд разнообразных процессов, имеющих чисто случайное сходство, объединяя в этом понятии и порчу пищевых продуктов (мяса, рыбы, яиц, плодов, овощей), и разложение трупов животных и растений, и разнообразные процессы, протекающие в навозе, растительных отбросах, и т.д.

Аммонификация белка - сложный многоступенчатый процесс. Его внутренняя сущность заключается в энергетических превращениях микроорганизмами аминокислот с использованием их углеродного скелета в синтезе цитоплазменных соединений. В естественных условиях разложение богатых белками веществ растительного и животного происхождения, возбуждаемое различными бактериями, плесенями, актиномицетами, протекает необычайно легко как при широком доступе воздуха, так и в условиях полного анаэробиоза. В связи с этим химизм разложения белковых веществ и природа возникающих продуктов распада могут сильно варьировать в зависимости от вида микроорганизма, химической природы белка, условий протекания процесса: аэрации, влажности, температуры.

При доступе воздуха, например, процесс гниения протекает очень интенсивно, вплоть до полной минерализации белковых веществ - образуется аммиак и даже частично элементарный азот, образуются либо метан, либо углекислый газ, а также сероводород и соли фосфорной кислоты. В анаэробных условиях, как правило, полной минерализации белка не происходит, и часть возникающих (промежуточных) продуктов гниения, имеющих обычно неприятный запах, сохраняется в субстрате, придавая ему тошнотворный запах гниения.

Препятствует аммонификации белков низкая температура. В вечномерзлых слоях земли Крайнего Севера находили, например, трупы мамонтов, пролежавшие десятки тысячелетий, но не подвергшиеся разложению.

В зависимости от индивидуальных свойств микроорганизмов - возбудителей гниения - происходит либо неглубокий распад белковой молекулы, либо глубокое ее расщепление (полная минерализация). Но есть и такие микроорганизмы, которые принимают участие в гниении лишь после того, как в субстрате в результате жизнедеятельности других микробов появляются продукты гидролиза белковых веществ. Собственно «гнилостными» называют тех микробов, которые возбуждают глубокий распад белковых веществ, обусловливая полную их минерализацию.

Белковые вещества в процессе питания не могут быть непосредственно усвоены микробной клеткой. Коллоидная структура белков препятствует их поступлению в клетку через клеточную оболочку. Лишь после гидролитического расщепления более простые продукты гидролиза белков проникают внутрь микробной клетки и используются ею в синтезе клеточного вещества. Таким образом, гидролиз белков протекает вне тела микроба. Микроб для этого выделяет в субстрат протеолитические экзоферменты (протеиназы). Такой способ питания обусловливает в субстратах разложение огромных масс белковых веществ, тогда как внутри микробной клетки в белковую форму превращается лишь сравнительно небольшая часть продуктов гидролиза белка. Процесс расщепления белковых веществ в данном случае в большой степени преобладает над процессом их синтеза. В силу этого общебиологическая роль гнилостных микробов как агентов разложения белковых веществ огромна.

Механизм минерализации сложной белковой молекулы гнилостными микробами можно представить следующей цепью химических превращений:

I. Гидролиз крупной белковой молекулы до альбумоз, пептонов, полипептидов, дипептидов.

II. Продолжающийся более глубокий гидролиз продуктов расщепления белка до аминокислот.

III. Превращения аминокислот под действием микробных ферментов. Разнообразие аминокислот и ферментов, имеющихся в ферментативном комплексе различных микробов, те или иные условия протекания процесса обусловливают и чрезвычайное химическое разнообразие продуктов превращения аминокислот.

Так, аминокислоты могут подвергаться декарбоксилированию, дезаминированию как окислительному, так и восстановительному и гидролитическому. Энергичная карбоксилаза вызывает декарбоксилирование аминокислот с образованием летучих аминов или диаминов, имеющих тошнотворный запах. Из аминокислоты лизина при этом образуется кадаверин, из аминокислоты орнитина - путресцин:

Кадаверин и путресцин получили название «трупных ядов» или птомаинов (от греческого ptoma - труп, падаль). Ранее считалось, что птомаины, возникающие при распаде белков, вызывают пищевые отравления. Однако в настоящее время выяснено, что ядовитыми являются не сами птомаины, а сопутствующие им их производные - нейрин, мускарин, а также некоторые вещества неизвестной химической природы.

При дезаминировании от аминокислот отщепляется аминогруппа (NH2), из которой образуется аммиак. Реакция субстрата при этом становится щелочной. При окислительном дезаминировании, кроме аммиака, образуются еще и кетонокислоты:

При восстановительном дезаминировании возникают предельные жирные кислоты:

Гидролитическое дезаминирование и декарбоксилирование приводят к возникновению спиртов:

Кроме того, могут образоваться при этом и углеводороды (например, метан), непредельно жирные кислоты, водород.

Из ароматических аминокислот в анаэробных условиях возникают дурнопахнущие продукты гниения: фенол, индол, скатол. Индол и скатол образуются обычно из триптофана. Из аминокислот, содержащих серу, в аэробных условиях гниения возникают сероводород или меркаптаны, также обладающие неприятным запахом тухлых яиц. Сложные белки - нуклеопротеиды - распадаются на нуклеиновые кислоты и белок, которые в свою очередь расщепляются. Нуклеиновые кислоты при распаде дают фосфорную кислоту, рибозу, дезоксирибозу и азотистые органические основания. В каждом конкретном случае возможно протекание только части указанных химических превращений, а не полностью всего цикла.

Появление в пищевых продуктах, богатых белком (таких, как мясо или рыба), запаха аммиака, аминов и других продуктов распада аминокислот является показателем их микробной порчи.

Микроорганизмы, возбуждающие аммонификацию белковых веществ, очень широко распространены в природе. Они встречаются повсеместно: в почве, в воде, в воздухе - и представлены чрезвычайно разнообразными формами - аэробными и анаэробными, факультативноанаэробными, спорообразующими и бесспорозыми.

Аэробные гнилостные микроорганизмы

Сенная палочка (Bacillus subtilis) (рис. 35) - широко распространенная в природе аэробная бацилла, обычно выделяемая из сена, очень подвижная палочка (3-5 х 0,6 мкм) с перитрихиальным жгутованием. Если выращивание производить на жидких средах (например, на сенном отваре), то клетки бациллы получаются несколько крупнее и соединяются в длинные цепочки, образуя на поверхности жидкости морщинистую и сухую серебристо-беловатую пленку. При развитии на твердых средах, содержащих углеводы, образуется мелкоморщинистая сухая или зернистая, срастающаяся с субстратом колония. На ломтиках картофеля колонии сенной палочки всегда получаются слегка морщинистыми, бесцветными или слегка розоватыми, напоминающими бархатистый налет.

Развивается сенная палочка в очень широком диапазоне температур, являясь практически космополитом. Но вообще считается, что наилучшей температурой для ее развития является 37-50 °С. Споры у сенной палочки овальные, располагаются эксцентрально, без строгой локализации (но все же во многих случаях ближе к центру клетки). Прорастание спор экваториальное. Грамположительна, углеводы разлагает с образованием ацетона и уксусного альдегида, обладает очень высокой протеолитической способностью. Споры сенной палочки весьма термоустойчивы - нередко сохраняются в консервах, стерилизованных при 120°С.

Картофельная палочка (Bac. mesentericus) (рис. 36) - распространена в природе не менее широко, чем сенная. Обычно картофельная палочка встречается на картофеле, попадая сюда из почвы.

Морфологически картофельная палочка очень сходна с сенной: ее клетки (3-10 х 0,5-0,6 мкм) имеют перитрихиальное жгутование; встречаются как одиночные, так и соединенные в цепочку. Споры картофельной палочки, как и сенной, овальные, иногда встречаются продолговатые, крупные; располагаются они в любой части клетки (но чаще центрально). При формировании спор клетка не раздувается, споры прорастают экваториально.

При выращивании на ломтиках картофеля картофельная палочка образует обильный желтовато-бурый складчатый влажно блестящий налет, напоминающий брыжейку, благодаря чему микроб и получил свое название. На агаровых белковых средах образует тонкие, сухие и морщинистые колонии, не срастающиеся с субстратом.

По Граму картофельная палочка окрашивается положительно. Оптимальная температура развития, как и у сенной палочки, 35-45 °С. При разложении белков образует много сероводорода. Споры картофельной палочки очень термоустойчивы и подобно спорам сенной палочки выдерживают длительное кипячение, часто сохраняясь в консервированных продуктах.

Bac. сеreus. Это - палочки (3-5 х 1-1,5 мкм) с прямыми концами, одиночные или соединенные в запутанные цепочки. Встречаются варианты и с более короткими клетками. Цитоплазма клеток заметно зернистая или вакуолистая, по концам клеток часто образуются блестящие жироподобные зерна. Клетки бациллы подвижные, с перитрихиальным жгутованием. Споры Вас. cereus образует овальные или эллипсоидные, обычно располагающиеся центрально и прорастающие полярно. При развитии на МПА (мясопептонном агаре) бацилла образует крупные компактные колонии со складчатым центром и ризоидными волнистыми краями. Иногда колонии бывают мелкобугристыми с бахромчатыми краями и жгутиковидными выростами, с характерными крупинками, преломляющими свет. Bac. cereus является аэробом. Однако в некоторых случаях развивается и при затрудненном доступе кислорода. Встречается эта бацилла в почве, в воде, на растительных субстратах. Желатину разжижает, молоко пептонизирует, крахмал гидролизует. Температурный оптимум развития Bac. cereus 30 °С, максимум 37-48 °С. При развитии в мясопептонном бульоне образует обильную однородную муть с легко распадающимся мягким осадком и нежной пленкой на поверхности.

Из других аэробных гнилостных микробов можно отметить земляную палочку (Вас. mycoides), Вас. megatherium, а также бесспоровые пигментные бактерии - «чудесную палочку» (Bact. prodigiosum), Pseudomonas fluorescens.

Земляная палочка (Bac. mycoides) (рис. 37) - одна из очень распространенных гнилостных почвенных бацилл, имеет довольно крупные (5-7 х 0,8-1,2 мкм) одиночные или соединенные в длинные цепочки клетки. На твердых средах земляная палочка образует весьма характерные колонии - пушистые, ризоидные или мицелиевидные, стелющиеся по поверхности среды, как грибной мицелий. За это сходство бацилла и получила название Bac. mycoides, что значит «грибовидная».

Bac. megaterium - бацилла, имеющая крупные размеры, за что и получила свое название, означающее «большое животное». Она постоянно встречается в почве и на поверхности гниющих материалов. Молодые клетки обычно толстые - до 2 мкм в поперечнике, длиной от 3,5 до 7 мкм. Содержимое клеток грубозернистое с большим количеством крупных включений жироподобного или гликогеноподобного вещества. Нередко включения заполняют почти сплошь всю клетку, придавая ей весьма характерное строение, по которому легко распознают данный вид. Колонии на агаровых средах гладкие, грязно-белые, жирно-блестящие. Края колонии резко обрезаны, иногда волнисто-бахромчатые.

Пигментная бактерия Pseudomonas fluorescens мелкая (1-2 х 0,6 мкм) грамотрицательная бесспоровая палочка, подвижная, с лофотрихиальным жгутованием. Бактерия образует зеленовато-желтый флюоресцирующий пигмент, который, проникая в субстрат, окрашивает его в желто-зеленый цвет.

Пигментная бактерия Bacterium prodigiosum (рис. 38) широко известна под названием «чудесная палочка» или «палочка чудесной крови». Очень маленькая грамотрицательная бесспоровая подвижная палочка с перитрихиальным жгутованием. При развитии на агаровых и желатиновых средах образует колонии темно-красного цвета с металлическим блеском, напоминающие капли крови.

Появление таких колоний на хлебе и картофеле в средние века вызывало у религиозных людей суеверный ужас и связывалось с злокознями «еретиков» и «дьявольским наваждением». Из-за этой безвредной бактерии святейшая инквизиция сожгла на кострах не одну тысячу совершенно невинных людей.

Факультативноанаэробные бактерии

Палочка протея, или вульгарный протей (Proteus vulgaris) (рис. 39). Этот микроб является одним из наиболее типичных возбудителей гниения белковых веществ. Он часто встречается на самопроизвольно загнившем мясе, в кишечнике животных и человека, в воде, в почве и пр. Клетки этой бактерии отличаются большой полиморфностью. В суточных культурах на мясо- пептонном бульоне они мелкие (1-3 х 0,5 мкм), с большим количеством перитрихиально расположенных жгутиков. Затем начинают появляться извитые нитевидные клетки, достигающие в длину 10-20 мкм и более. Благодаря такому разнообразию в морфологическом строении клеток бактерия и была названа по имени морского бога Протея, которому древнегреческая мифология приписывала способность менять свой образ и превращаться по желанию в различных животных и чудовищ.

Как мелкие, так и крупные клетки протея обладают сильным движением. Это придает колониям бактерии на твердых средах, характерную особенность «роения». Процесс «роения» заключается в том, что из колонии выходят отдельные клетки, скользят по поверхности субстрата и на некотором расстоянии от нее останавливаются, размножаются, давая начало новому росту. Получается масса мелких, едва видимых простым глазом беловатых колоний. От этих колоний снова отделяются новые клетки и на свободной от микробного налета части среды образуют новые центры размножения и т.д.

Вульгарный протей - грамотрицательный микроб. Оптимальная температура его развития 25-37°С. При температуре около 5 °С он прекращает свой рост. Протеолитическая способность протея очень велика: он разлагает белки с образованием индола и сероводорода, вызывая резкое изменение кислотности среды - среда становится сильнощелочной. При развитии на углеводных средах протей образует много газов (CO2 и H2).

В условиях умеренного доступа воздуха при развитии на пептонных средах некоторой протеолитической способностью обладает кишечная палочка (Escherichia coli). Характерно при этом образование индола. Но кишечная палочка не является типичным гнилостным микроорганизмом и на углеводных средах в анаэробных условиях вызывает нетипичное молочнокислое брожение с образованием молочной кислоты и целого ряда побочных продуктов.

Анаэробные гнилостные микроорганизмы

Clostridium putrificum (рис. 40) - энергичный возбудитель анаэробного разложения белковых веществ, осуществляющий это расщепление с обильным выделением газов - аммиака и сероводорода. Cl. putrificum довольно часто встречается в почве, воде, в полости рта, в кишечнике животных и на разных гниющих продуктах. Иногда может быть обнаружен и в консервах. Cl. putrificum - подвижные палочки с перитрихиальным жгутованием, удлиненные и тонкие (7-9 х 0,4-0,7 мкм). Встречаются и более длинные клетки, соединенные в цепочки и одиночные. Температурный оптимум развития клостридия 37 °С. Развиваясь в глубине мясопептонного агара, он образует хлопьевидные рыхлые колонии. Споры шаровидные, расположены терминально. При спорообразовании в месте возникновения споры клетка сильно раздувается. Спороносящие клетки Cl. putrificum напоминают спороносящие клетки бациллы ботулизма.

Термоустойчивость спор Cl. putrificum довольно высокая. Если при производстве консервов споры не будут уничтожены, при хранении готовой продукции на складе они могут развиться и вызвать порчу (микробиологический бомбаж) консервов. Сахаролитическими свойствами Cl. putrificum не обладает.

Clostridium sporogenes (рис. 41) - по морфологическим признакам представляет собой довольно крупную палочку с закругленными концами, легко образующую цепочки. Микроб очень подвижен благодаря перитрихиально расположенным жгутикам. Название Clostridium sporogenes, данное И. И. Мечниковым (1908 г.), характеризует способность этого микроба быстро образовывать споры. Через 24 ч под микроскопом можно видеть много палочек и свободно лежащих спор. Через 72 ч процесс спорообразования заканчивается и вегетативных форм совсем не остается. Споры микроб образует овальные, расположенные центрально или ближе к одному из концов палочки (субтерминально). Капсул не образует. Оптимум развития 37 °С.

Cl. sporogenes - анаэроб. Токсическими и патогенными свойствами не обладает. В анаэробных условиях на агаровых средах образует поверхностные мелкие, неправильной формы, вначале прозрачные, а затем превращающиеся в непрозрачные желтовато-белые колонии с бахромчатыми краями. В глубине агара колонии образуются «мохнатые», круглые, с плотным центром. Аналогично в анаэробных условиях микроб вызывает быстрое помутнение мясопептонного бульона, газообразование и появление неприятного гнилостного запаха. В ферментативном комплексе Clostridium sporogenes содержатся очень активные протеолитические ферменты, способные расщеплять белок, до последней его стадии. Под действием Clostridium sporogenes молоко пептонизируется уже через 2-3 дня и рыхло свертывается, желатина разжижается. На средах с печенью иногда образуется черный пигмент с выделяющимися белыми кристаллами тирозина. Микроб вызывает почернение и переваривание мозговой среды и резкий гнилостный запах. Кусочки ткани быстро перевариваются, разрыхляются и расплавляются почти до конца в течение нескольких дней.

Clostridium sporogenes обладает также и сахаролитическими свойствами. Распространенность этого микроба в природе, резко выраженные протеолитические свойства, высокая термоустойчивость спор характеризуют его как одного из главных возбудителей гнилостных процессов в пищевых продуктах.

Cl. sporogenes является возбудителем порчи мясных и мясо-овощных консервов. Чаще всего подвергаются порче консервы «Мясо тушеное» и первые обеденные блюда с мясом и без мяса (борщ, рассольник, щи и др.). Наличие небольшого количества спор, оставшихся в продукте после стерилизации, может вызвать порчу консервов при хранении в условиях комнатной температуры. Наблюдается сначала покраснение мяса, затем почернение, появляется резкий гнилостный запах, при этом часто наблюдается бомбаж банок.

В гнилостном разложении белков принимают участие и различные плесневые грибы и актиномицеты - Penicillium, Mucor mucedo, Botrytis, Aspergillus, Trichoderma и др.

Значение процесса гниения

Общебиологическое значение процесса гниения огромно. Гнилостные микроорганизмы являются «санитарами земли». Вызывая минерализацию громадного количества белковых веществ, попадающих в почву, осуществляя разложение трупов животных и растительных отбросов, они производят биологическую очистку земли. Глубокое расщепление белков вызывают споровые аэробы, менее глубокое - споровые анаэробы. В природных условиях этот процесс совершается поэтапно в содружестве многих видов микроорганизмов.

Но в пищевом производстве гниение является вредным процессом и наносит большой материальный ущерб. Порча мяса, рыбы, овощей, яиц, фруктов и других продуктов питания наступает быстро и протекает очень энергично, если хранить их незащищенными, в условиях, благоприятных для развития микробов.

Лишь в отдельных случаях в пищевом производстве гниение может быть использовано как полезный процесс - при созревании соленой сельди и сыров. Используется гниение в кожевенном производстве для швицевания шкур (удаление шерсти со шкур животных при выработке кож). Зная причины процессов гниения, люди научились защищать пищевые продукты белкового происхождения от их распада путем применения самых разнообразных методов консервирования.

В группу гнилостных бактерий входят микроорганизмы, вызыва­ющие глубокий распад белков. При этом образуется ряд веществ, обладающих неприятным запахом, вкусом, нередко и ядовитыми свой­ствами. Гнилостные бактерии могут быть как аэробы, так и анаэро­бы, споровые и бесспоровые.

К факультативно аэробным бесспоровым гнилостным бактериям часто встречающимся в молоке, относятся грамотрицательные па­лочки Proteus vulgaris (протей), способные активно пептонизировать молоко с выделением газа. При развитии этих микроорганизмов в молоке кислотность его вначале несколько повышается (вследствие образования жирных кислот), а затем снижается в результате на­копления щелочных продуктов. Бесспоровые бактерии, например Proteus vulgaris, могут попадать в молоко с оборудования, из воды и других источников. При пастеризации молока Proteus vulgaris по­гибают.

К аэробным споровым бактериям относятся Вас. subtilis (сеннаяая палочка), Вас. mesentericus (картофельная палочка), Вас. mycoides, Вас. megatherium и пр. Все они подвижны, красятся по Граму положительно, быстро развиваются в молоке, активно разлагая белки. При этом сна­чала молоко свертывается без существенного повышения кислотно­сти, затем с поверхности сгустка наступает пептонизация молока. У некоторых споровых палочек (например, сенной) пептонизацпя молока начинается без предварительного свертывания казеина. Из анаэробных споровых гнилостных бактерий в молоке встре­чаются Вас. putrificus и Вас. polymyxa.

Вас. putrificus - подвижная палочка, разлагающая белки с обиль­ным образованием газов (аммиака, углекислоты, водорода, серово­дорода), Вас. polymyxa - подвижная палочка, образующая в молоке газ, кислоты (уксусную, муравьиную), этиловый и бутиловый спир­ты и другие продукты.

Высокая чувствительность к понижению реакции среды харак­терна для всех гнилостных бактерий. Этой особенностью определя­ются крайне ограниченные возможности для развития данной груп­пы бактерий при производстве кисломолочных продуктов. Очевидно, что во всех случаях, когда молочнокислый процесс развивается ак­тивно, жизнедеятельность гнилостных бактерий прекращается. В производстве кисломолочных продуктов развитие гнилостных бактерий возможно только в исключительных случаях (в результа­те развития бактериофага полностью пли в значительной мере ос­тановлен молочнокислый процесс, утрачена активность закваски и т. д.). Споры многих гнилостных бактерий могут содержаться в пасте­ризованном молоке. Однако практически они не играют роли при производстве и хранении этого продукта. Это объясняется тем, что основную остаточную микрофлору после пастеризации составляют молочнокислые бактерии, они же обсеменяют молоко при розливе, поэтому на фоне развития (хотя и слабого, из-за низких температур

хранения) молочнокислого процесса возможность размножения спо­ровых микроорганизмов в пастеризованном молоке ничтожна. При производстве же и хранении стерилизованного молока спо­ровые бактерии играют немаловажную роль. Даже незначительные нарушения режимов стерилизации могут привести к попаданию спор в стерилизованное молоко и вызвать в последующем его пор­чу при хранении.

ДРОЖЖИ

В основу классификации дрожжей положены различия в харак­тере их вегетативного размножения (деление, почкование). спорообразования, а также морфологические и физиологические признаки.

По способности к спорообразованию дрожжи делят на спорообразующие и неспорообразующие. В кисломолочных продуктах из спорообразующих встречаются дрожжи родов Saccharomyces, Zygosacc-haromyces, Fabospora и Debaromyces, из неспоровых - родов Torulopsis it Candida. С. А.

Королев (1932) разделил дрожжи, встречающиеся в молоч­ных продуктах, по их биохимическим свойствам на три группы.

Первая группа - дрожжи, не способные к спиртовому брожению, хотя и потребляющие некоторые углеводы путем непосредственного окисления; к ним относятся виды Mycoderma, цветные бесспоровые дрожжи Tornla.

Вторая группа - дрожжи, не сбраживающие лактозу, но сбражи­вающие другие сахара; могут развиваться лишь в совместной культу­ре с микроорганизмами, обладающими ферментом лактазой, гпдролизующей молочный сахар на моносахара; к ним относятся отдель­ные виды дрожжей рода Saccharomyces. Как показали исследования В. И. Кудрявцева (1954) и A.M. Скородумовой (1969), в кисломолочных продуктах, приготовленных на естественных заквасках, основ­ными представителями этого рода являются дрожжи вида Sacch. cartilaginosus, сбраживающие мальтозу и галактозу. По мнению В. И. Кудрявцева, дрожжи этой группы могут положительно влиять на вкус и аромат кисломолочных продуктов, однако при чрезмерном их развитии возникает порок - вспучивание. Они относятся к так называемым диким дрожжам и при производстве кисломолочных продуктов их не применяют. Однако возможно, что среди дрожжей этой группы могут быть найдены производственно-ценные куль­туры.

Третья группа - дрожжи, сбражнвающпе лактозу. Исследования А. М. Скородумовой (1969) показали, что среди дрожжей, выделен­ных из кисломолочных продуктов (приготовленных на естественной закваске), число дрожжей, самостоятельно сбраживающих лактозу, сравнительно невелико - из 150 штаммов - 32 (21%). Наибольший процент дрожжей, сбражпвающих лактозу, был выделен из кефир ных грибков и закваски (34,1%). Дрожжи, сбраживающие лактозу, были идентифицированы А. М. Скородумовой как Fabospora fragilis, Saccharomyces lactis, реже Zygosaccharomyces lactis. Способностью сбраживать лактозу обладают также некоторые ви­ды Candida и Torulopsis - Candida pseudotropicalis var. lactosa, Torulopsis kefir, Torylopsis sphaerica, выделенные из кефир­ного грибка (В. И. Буканова, 1955).

Исследования, проводившиеся в Японии Т. Наканиши и Дж. Араи (1968, 1969), показали также, что наиболее распространенны­ми видами лактозосбраживающих дрожжей, выделенных из сырого молока, являются Saccharomyces lactis, Torulopsis versatilis, Toru­lopsis sphaerica, Candida pseudotropicalis.

Для установления отношения дрожжей к сахарам культуры па­раллельно высевают в молочно-пептонную сыворотку, содержащую только лактозу, и на сусло, содержащее мальтозу. После выдержки при оптимальной температуре отмечают наличие пли отсутствие га­за.

Оптимальная температура развития дрожжей 25-30° С, что следует учитывать при выборе температуры для созревания продук­тов, в состав микрофлоры которых они входят. По данным В. II. Букановой (1955) основным фактором, регулирующим развитие дрож­жей разных видов в кефире, является температура. Так, повышен­ная температура (30-32° С) стимулирует развитие Torulopsis sphaerica п дрожжей, не сбраживающих лактозу. Дрожжи, сбраживающие лактозу, достаточно хорошо развиваются и при 18-20° С, однако повышение температуры до 25 и 30° С, как правило, стимулирует их размножение.

Большинство дрожжей предпочитает для своего развития кислую реакцию среды. Следовательно, в кисломолочных продуктах условия для них благоприятны.

Дрожжи очень широко распространены в кисломолочных продук­тах и могут быть обнаружены почти в любом образце продукта, при­готовленного на естественных заквасках. Однако дрожжи развива­ются гораздо медленнее, чем молочнокислые бактерии, поэтому в кис­ломолочных продуктах они обнаруживаются в меньшем количестве, чем молочнокислые бактерии.

Роль дрожжей и производстве кисломолочных продуктов исклю­чительно велика. Обычно дрожжи рассматривают главным образом как возбудителей спиртового брожения. Но эта функция, по-види­мому, не основная. Дрожжи активизируют развитие молочнокис­лых бактерий, витаминизируют продукты (С. Аскалонов, 1957). Дрожжи, сбраживающие лактозу и другие сахара, способны выра­батывать антибиотические вещества, активные против туберкулез­ной палочки и других микроорганизмов (А. М. Скородумова, 1951, 1954; В. И. Буканова, 1955).

Интенсивное развитие дрожжей незаквасочного происхождения нередко приводит к вспучиванию и изменению вкуса таких продук­тов, как сметана, творог и сладкие творожные изделия. Излишнее развитие дрожжей, содержащихся в кефирной закваске при наруше­нии технологических режимов, также может вызвать газообразова­ние в кефире (“глазки”) и даже его вспучивание.

Краткая характеристика микроорганизмов кормов

Микробиологические процессы, происходящие при силосовании.

Количественный и качественный (видовой) состав сообщества микроорганизмов, участвующих в созревании силоса зависит от ботанического состава зеленой массы, содержания в ней растворимых углеводов и протеина, влажности исходной массы. Так, например, сырье богатое белками (клевер, люцерна, донник, эспарцет) в отличие от сырья, богатого углеводами (кукуруза, просо и др.), силосуется при длительном участии в процессах гнилостных бактерий и при замедленном нарастании численности молочнокислых бактерий.

После закладки растительной массы в хранилище наблюдается массовое размножение микроорганизмов. Их общее количество уже через 2-9 суток может значительно превышать количество микроорганизмов, попадающих с растительной массой.

При всех способах силосования в созревании силосов участвует сообщество микроорганизмов, состоящее из двух диаметрально противоположных групп по характеру воздействия на растительный материал: вредные (нежелательные) и полезные (желательные) группы.

В процессе силосования происходит замена гнилостных микроорганизмов молочнокислыми, которые вследствие образования молочной и частично уксусной кислот снижают рН корма до 4,0-4,2 и тем самым создают неблагоприятные условия для развития гнилостных микроорганизмов (табл.2).

Условия для существования (потребность в кислороде, отношение к температуре, активной кислотности и т.д.) для различных групп микроорганизмов неодинаковые. С точки зрения потребности в кислороде различают условно три группы микроорганизмов:

· размножающиеся только при полном отсутствии кислорода (облигатные анаэробы);

· размножающиеся только при наличии кислорода (облигатные аэробы);

· размножающиеся как при наличии кислорода, так и без него (факультативные анаэробы).

Чтобы ограничить деятельность вредных микроорганизмов и стимулировать размножение полезных бактерий следует знать особенности отдельных групп микроорганизмов.

Молочнокислые бактерии

Среди разнообразной эпифитной микрофлоры растений содержится лишь сравнительно небольшое количество неспорообразующих факультативных анаэробов, гомо, - гетероферментативных молочнокислых бактерий.

Основным свойством молочнокислых бактерий, по которым их объединяют в отдельную обширную группу микроорганизмов, является способность образовывать в качестве продукта брожения молочную кислоту:

Она создает в среде активную кислотность (рН 4,2 и ниже), неблагоприятно действующую на нежелательные микроорганизмы. Помимо этого, значение молочнокислых бактерий заключается в бактерицидном действии недиссоциированной молекулы молочной кислоты и способности их образовывать специфические антибиотические и др. биологически активные вещества.

Молочнокислые бактерии отличаются следующими особенностями, важными для силосования:

1. Нуждаются для обмена веществ, главным образом, в углеводах (сахар, реже крахмал);

2. Белок не разлагают (некоторые виды в ничтожном количестве);

3. Они факультативные анаэробы, т.е. развиваются без кислорода и при наличии кислорода;

4. Температурный оптимум чаще всего составляет 30 0 С (мезофильные молочнокислые бактерии), но у некоторых форм он достигает 60 0 С (термофильные молочнокислые бактерии);

5. Выдерживают кислотность до рН 3,0;

6. Могут размножаться в силосе с очень высоким содержанием сухого вещества;

7. Легко переносят высокие концентрации NаClи обладают устойчивостью к некоторым другим химическим препаратам;

8. Помимо молочной кислоты, которая играет решающую роль в подавлении нежелательных типов брожения, молочнокислые бактерии выделяют биологически активные вещества (витамины группы В и др.). Они обладают профилактическими (или лечебными) свойствами, стимулируют рост и развитие с.-х. животных.

При благоприятных условиях (достаточное содержание в исходном растительном материале водорастворимых углеводов, анаробиоз) молочнокислое брожение заканчивается всего за несколько дней и рН достигает оптимального значения – 4,0-4,2.

Маслянокислые бактерии

Маслянокислые бактерии (Clostridiumsp.) - спорообразующие, подвижные, палочковидные анаэробные маслянокислые бактерии (клостридии) широко распространены в почве. Присутствие клостридий в силосе является результатом загрязнения почвой, поскольку их численность на зеленой массе кормовых культур, как правило, очень низка. Почти сразу же после заполнения хранилища зеленой массой маслянокислые бактерии начинают интенсивно размножаться вместе с молочнокислыми в первые несколько дней.

Высокая влажность растений, обуславливающаяся наличием в измельченной силосной массе клеточного сока растений и анаэробные условия в силосохранилище – идеальные условия для роста клостридий. Поэтому уже к концу первых суток их численность возрастает и в дальнейшем зависит от интенсивности молочнокислого брожения. В случае слабого накопления молочной кислоты и снижения рН маслянокислые бактерии энергично размножаются и число их достигает максимума (10 3 -10 7 клеток/г) в несколько суток.

По мере увеличения влажности (при содержании в силосной массе 15% сухого вещества) чувствительность клостридий к кислотности среды снижается даже при рН 4,0 (4)

Для возбудителей маслянокислого брожения характерны следующие основные физиолого-биохимические особенности:

1. Маслянокислые бактерии, являясь облигатными анаэробами, начинают развиваться в условиях сильного уплотнения силосной массы;

2. Разлагая сахар, они конкурируют с молочнокислыми бактериями, а используя белки и молочную кислоту, приводят к образованию сильнощелочных продуктов распада белка (аммиака) и токсичных аминов;

3. Маслянокислые бактерии нуждаются для своего развития во влажном растительном сырье и при высокой влажности исходной массы имеют наибольшие шансы подавить все остальные типы брожения;

4. Оптимальные температуры для маслянокислых бактерий колеблются от 35-40 0 С, но их споры переносят более высокие температуры;

5. Чувствительны к кислотности и прекращают свою деятельность при рН ниже 4,2.

Эффективными мерами против возбудителей маслянокислого брожения являются – быстрое подкисление растительной массы, подвяливание влажных растений. Существуют биопрепараты на основе молочнокислых бактерий для активации молочнокислого брожения в силосе. Кроме того, разработаны химические вещества, которые оказывают бактерицидное (подавляющее) и бактериостатическое (тормозящее) действие на маслянокислые бактерии.

Гнилостные бактерии (Bacillus, Pseudomonas).

Представители рода бацилл (Bac.mesentericus, Вac.megatherium) сходны по своим физиолого-биохимическим особенностям с представителями клостридий, но в отличие от них способны развиваться в аэробных условиях. Поэтому они одними из первых включаются в процесс ферментации. Эти микроорганизмы являются активными продуцентами разнообразных гидролитических ферментов. Они используют в качестве питательных веществ различные белки, углеводы (глюкозу, сахарозу, мальтозу и др.) и органические кислоты.

Важным свойством гнилостных бактерий, которое имеет значение для протекающих в кормовой массе процессов, является их способность к спорообразованию.

О основными особенностями для возбудителей гнилостного брожения являются следующие:

1. Они не могут существовать без кислорода, поэтому в герметичном хранилище гниение невозможно;

2. Гнилостные бактерии разлагают прежде всего белок (до аммиака и токсичных аминов), а также углеводы и молочную кислоту (до газообразных продуктов);

3. Гнилостные бактерии размножаются при рН выше 5,5. При медленном подкислении корма значительная часть белкового азота переходит в аминную и аммиачную формы;

4. Важным свойством гнилостных бактерий является их способность к спорообразованию. В случае длительного хранения и скармливания силоса, в котором дрожжи и маслянокислые бактерии разложат большую часть молочной кислоты или она будет нейтрализована продуктами разложения белка, гнилостные бактерии, развиваясь из спор, могут начать свою разрушительную деятельность.

Главным условием ограничения существования гнилостных бактерий является быстрое заполнение, хорошая трамбовка, надежная герметизация силосохранилища. Потери, вызываемые возбудителями гнилостного брожения, можно снизить при помощи химических консервантов и биопрепаратов.

Плесневые грибы и дрожжи.

Оба эти типа микроорганизмов относятся к грибам и являются весьма нежелательными представителями микрофлоры силоса. Они легко переносят кислую реакцию среды (рН 3,2 и ниже). Поскольку плесневые грибы (Penicillium,Aspergillusи др.) являются облигатными аэробами, то они начинают развиваться сразу после заполнения хранилища, но с исчезновением кислорода развитие их прекращается. В правильно заполненном силосохранилище с достаточной степенью уплотнения и герметизацией это происходит уже через несколько часов. Если в силосе есть очаги плесени, значит вытеснение воздуха было недостаточным или герметизация была неполной.

Дрожжи (Hansenula,Pichia,Candida,Saccharomyces, Тorulopsis) развиваются непосредственно после заполнения хранилищ, т.к. они являются факультативными анаэробами и могут развиваться при незначительных количествах кислорода в силосе. Кроме того они обладают высокой устойчивостью к температурному фактору и низкому рН.

Дрожжевые грибы прекращают свое развитие только при полном отсутствии кислорода в силосохранилище, но небольшие их количества обнаруживаются в поверхностных слоях силоса.

В анаэробных условиях они используют простые сахара (глюкозу, фруктозу, маннозу, сахарозу, галактозу, рафинозу, мальтозу, декстрины) по гликолитическому пути и развиваются за счет окисления сахаров и органических кислот:

Полное использование последних приводит к тому, что кислая среда силоса сменяется щелочной, создаются благоприятные условия для развития маслянокислой и гнилостной микрофлоры.

В результате этого снижается качество силоса из кукурузы, а также из «глубоко» провяленных трав, т.е. кормов с наилучшими показателями по продуктам брожения.

Таким образом, для плесневых грибов и дрожжей свойственно:

1. Плесневые грибы и дрожжи относятся к нежелательным представителям аэробной микрофлоры;

2. Негативное действие плесневых грибов и дрожжей в том, что они вызывают окислительный распад углеводов, белков и органических кислот (в т.ч. молочной);

3. Легко переносят кислую реакцию среды (рН ниже 3,0 и даже 1,2);

4. Плесневые грибы выделяют опасные для здоровья животных и людей токсины;

5. Дрожжи, являясь возбудителями вторичных процессов брожения, приводят к аэробной нестабильности силосов.

Ограничение доступа воздуха путем быстрой закладки, трамбовки и герметизации, правильная выемка и скармливание – решающие факторы, ограничивающие развитие плесневых грибов и дрожжей. Для подавления развития возбудителей вторичного брожения рекомендованы препараты с фунгистатической (фунгицидной) активностью (приложение 2).


Похожая информация.


Оказывается, у гнилостных бактерий , как вообще у многих бактерий, имеются органы движения, знакомые уже нам жгутики, при посредстве которых они могут самостоятельно передвигаться.

Как ни благодетельствуют нас эти наши друзья, без которых самая жизнь наша была бы невозможна, однако, надо быть с ними настороже; все бактерии коварны. В то время как тело животного только что начало разлагаться и еще нисколько не напоминает собой порченного мяса, в нем могут под влиянием бактерий образоваться страшные яды, унесшие в могилу немало людей, съевших такое ядовитое мясо. Особенно часты случаи отравления так называемым рыбным ядом, который при страшной силе действия на организм, ничем не выдает своего присутствия. При дальнейшем тлении трупов, эти яды сами разлагаются и исчезают.

Животное уже при жизни выбрасывает значительное количество воспринятых питательных элементов в виде кала и мочи. Все эти отбросы также перерабатываются микробами и минерализируются, после чего могут служить пищей для растений. Уже выше было сказано, что в кишечнике человека и животных имеется колоссальное количество бактерий. Они разлагают гнилостными процессами каловые массы уже внутри тела, а затем довершают разложение после того, как они извергнуты наружу.

Когда мы отвозим навоз в поле, мы часто не знаем, что это удобрение становится доступным для наших культурных растений только после переработки его микробами, незаметными кормильцами растений. Значительная часть азота, принятого в пищу животным, выделяется в виде мочи.

Азот - самый ценный для растений элемент, которого они жадно ищут повсюду и с которым обходятся крайне бережно. И вот, азот мочи становится доступным для растений, благодаря особому виду бактерий, производящих брожение мочи, открытое Пастером. Эти оригинальные химики разлагают главную составную часть мочи человека, мочевину, на углекислый газ и аммиак, производя таким образом, ее полную минерализацию. А воспринятый растениями азот аммиака переходит в них в такие питательные вещества, которые поддерживают жизнь животных и человека. Таким образом, бактерии брожения мочи также являются нашими благодетелями.

Безазотистые органические вещества, количество которых особенно велико в растениях, после смерти организма разлагаются прежде всего в громадных количествах в процессах спиртового, молочнокислого и маслянокислого брожения.

Дрожжи, поселяющиеся всегда там, где имеется запас сахара, на оболочках всех плодов, на ягодах винограда и других растений, только и ждут возможности проникнуть внутрь плода и вызвать там массовое разложение сахара с образованием спирта и углекислого газа. Образовавшийся спирт подхватывается сопровождающими дрожжи бактериями уксуснокислого брожения, которые превращают спирт в уксусную кислоту, то есть частично сжигая его. Те же самые бактерии при недостатке спирта действуют дальше и сжигают уксусную кислоту до углекислого газа и воды, но чаще это довершение минерализации сахара производят другие бактерии, не представляющие собой таких узких специалистов как возбудители разных брожений и обеспечивающие себе существование своей неприхотливостью и способностью при дыхании сжигать самое плохое топливо. Совокупность всех только что описанных работ микробов превращает сахар в минеральные продукты - углекислый газ и воду.

Другой путь минерализации безазотистого вещества, имеющий колоссальное распространение в природе, ведет через маслянокислое брожение. Бактерии, производящие это брожение, принадлежат к различным видам.

Поэтому то при брожении виноградного сока можно не прибавлять искусственно дрожжей.

В недрах сырой земли, на дне болот, в топях ила, всюду, куда не проникает живительный луч солнца, где царит мрак и смрад, неустанно работает могучий маслянокислый микроб и количество разложенного им материала значительно превышает те массы растительного происхождения, которые перерабатывает человек в своей технике. Если в искусственной культуре дать микробу хорошо подходящие ему условия, то из сосуда будет течь непрерывная струя газа, результат великолепной химической работы бактерии. Газ состоит из углекислоты и горючего водорода. В несколько минут мы можем набрать полный большой баллон этих газов и в природе такой процесс идет в необъятных размерах, не останавливаясь ни днем, ни ночью. Изумительные работники не знают ни минуты отдыха. Как жалка по своим размерам вся фабрично-заводская техника человечества по сравнению с гигантским размахом химического производства, идущего в природе при содействии различных микробов брожений. II с какой легкостью работают микроорганизмы спиртового и маслянокислого брожений. Как будто ничего не может быть проще превращения сахара и других безазотистых соединений в различные газы и кислоты, или спирты. А между тем, мы, люди, несмотря на все старания, пока еще не в состоянии произвести этих явлений в наших богато обставленных химических лабораториях, хотя бы в малом размере. Мы можем только изумляться…и учиться у бесконечно малых существ. Мы не будем рассматривать здесь всех брожений, число которых весьма велико, мы только познакомимся с парой примеров разрушения крайне прочных веществ, прежде всего с брожением клетчатки. Клетчатка представляет собой вещество, из которого построен остов, скелет растений. Она составляет главную массу тела крупных растений, особенно деревьев и, несомненно, по своей массе стоит на первом месте среди всех горючих органических веществ на земле. В химическом отношении клетчатка замечательна тем, что без нагревания почти не поддается действию самых едких жидкостей и почти ни в чем не растворяется. Даже крепкие кислоты и щелочи не растворяют клетчатки при обыкновенной температуре. Очищенная вата, лучшие сорта пропускной (фильтровальной) бумаги представляют собой почти химически-чистую клетчатку. Бумага непрочна и легко разрывается только потому, что представляет собой войлок тончайших нитей. Если, однако, спаять все эти нити в одну сплошную массу, то получается весьма прочный материал; в Америке такую клетчатку применяют для выделки вагонных шин и других предметов, требующих большой прочности. Древесина представляет собой слегка измененную клетчатку, пропитанную некоторыми веществами, придающими ей большую хрупкость, меньшую гибкость и прочность, но за то также способность всасывать в себя больше воды.

После смерти растения белковые и другие питательные вещества, из которых состоит их живое тело, быстро уничтожаются различными микроорганизмами, а остов, состоящий из клетчатки, остается в течение долгого времени нетронутым, так как вследствие своей прочности легко противостоит натиску мелких живых существ. Всякий, кому приходилось гулять по буковому или дубовому лесу, не мог не обратить внимания на толстый упругий ковер сухих листьев, в которых тонет нога и который накапливается в течение нескольких лет. Это все остовы листьев, состоящие из клетчатки. Однако, с течением времени и клетчатка исчезает, разрушается и переходит в простейшие минеральные соединения. Солома в навозе, также состоящая из клетчатки, при благоприятных условиях также истлевает и уничтожается каким-то способом, который долгое время оставался таинственным. В настоящее время мы знаем, что существуют некоторые бактерии, способные производить брожение клетчатки. Их обнаружить можно так: приготовив раствор необходимых для микробов минеральных солей, прибавляют к нему в качестве питательного материала только нарезанную полосками фильтровальную бумагу и заражают такую жидкость крошечным кусочком навоза. В навозе имеется огромное разнообразие микробов, но почти ни один из них не развивается из-за недостатка пищи. Кормиться одной только бумагой не под силу даже неприхотливым бактериям. Прекрасно чувствуют себя лишь специалисты по сбраживанию клетчатки; они разъедают бумагу и производят брожение, с выделением газов, от которых бумага всплывает на поверхность, увлекаемая током пузырьков. Этот процесс имеет, конечно, колоссальное значение в круговороте веществ: благодаря ему органическое вещество, находившееся в огромном количестве в форме, недоступной для обыкновенных живых существ, минерализируется и снова становится им доступно.

Какова же должна быть мощность тех химических средств, которыми располагают удивительные микробы, так легко и бурно разлагающие такой прочный материал! Еще один случай, наводящий химика на глубокие размышления о том, как бы выведать у бесконечно малых их секрет и применить его в широких размерах на пользу науки и техники.

Существуют в природе и другие способы массовой переработки клетчатки, а также иных близких к ней веществ. При этом происходит как бы медленное тление, сопровождаемое обугливанием. Так накопились огромные массы торфа и каменного угля, фундамент современной техники. Когда эти залежи будут истреблены, промышленность должна будет либо сойти на нет, либо обратиться за помощью к науке, в поисках нового источника энергии. И, по всем видимостям, такой момент должен в конце концов наступить.

Само собой разумеется, что работа всех описанных микроорганизмов, вызывающих брожения, полезна человеку только по случайному совпадению. По существу бактерии направляют свою деятельность на разложение веществ сложного состава, из которых образуются более простые. Это и составляет общий принцип, их деятельности. В некоторых отдельных случаях такое разложение вещества может быть, наоборот, вредно для человека потому, что оно разрушает продукты его техники. Так, например, уксуснокислое брожение может причинить большие убытки, если оно разовьется само собой в ценных напитках, содержащих спирт. Маслянокислое брожение, столь необходимое в природе, весьма нежелательно в том случае, если оно разойдется в пищевых продуктах.

Всегда вредна и нежелательна для человека деятельность некоторых грибков, разрушающих древесину. Из них особой известностью пользуется один вид так называемого домового гриба. Он превращает постройки, особенно сооруженные из сырого дерева, в мягкую труху; это явление сопряжено с растворением клетчатки, которое гриб производит, повидимому, с большой легкостью, так же, как бактерии, с которыми мы только что познакомились, но никакого брожения клетчатки с выделением газов домовый гриб, повидимому, не вызывает. Вследствие тайной работы этого неустанного вредителя, разрушено много деревянных домов и других построек.

Брожение селитры представляет собой очень нежелательное и невыгодное для земледельца явление. Азот в почве часто находится в недостаточном количестве, а потому земледельцу приходится дорожить им больше, чем всеми другими питательными элементами в земле; урожай главным образом зависит от азотного питания растений. Из всех форм, в которых может оказаться азот в почве, наиболее пригодна для растений селитра; не даром ее привозят в огромных количествах из Южной Америки и употребляют в качестве удобрения. Целый ряд бактерий разлагает в почве селитру, пользуясь этим процессом для добывания жизненной энергии. При бактериальном брожении селитры весь азот улетает в воздух и становится недоступным для растении. Таким образом, коварный микроб не только лишает азотного питания другие более высоко организованные растения, но при этом и сам то азотом селитры не пользуется, а только уменьшает и без того небольшие запасы полезного азота в почве.

Все микроорганизмы, вызывающие брожения, почти никогда не производят полной минерализации органического вещества. Они ограничиваются тем, что более сложно составленные соединения разлагают на более простые. Но целая армия других микробов сразу же нападает на продукты брожения и довершает превращение их в простейшие, так называемые минеральные вещества, уже не способные дальше разлагаться с выделением тепла. Все эти организмы, сопровождающие бродильных микробов на подобие того, как шакалы следуют за львом, чтобы доедать остатки его трапезы, чаще всего бывают неприхотливы и неразборчивы в выборе питания. Они не производят строго-специализированных брожений, но они сжигают при своем дыхании разнообразные вещества, на которые среди более разборчивых организмов нашлось бы мало охотников. В общей работе минерализации сложных веществ они играют не показную роль, но они совершенно необходимы для завершения этого важного процесса.

Однако и среди таких микробов, которые производят не брожения, а сжигания простых соединений, встречаются некоторые узкие специалисты, работа которых незаменима и бросается в глаза своей оригинальностью. Чудеса, открытые микробиологией, были бы недостаточно описаны, если бы мы не обратили наше внимание на подобного рода работников, которым мы в первую голову обязаны обеспечением постоянства жизни на земле.

С тех пор, как великий французский химик Лавуазье открыл закон вечности материи, мы знаем, что количество каждого основного простейшего вещества на нашей планете неизменно и определенно. Поэтому, если такое вещество необходимо для построения тела животных и растений, оно неизбежно должно после смерти этих живых существ переходить в такую форму, в которой может быть снова использовано растениями в качестве питательного материала. От растений оно с пищей будет передано животным, после смерти как тех, так и других организмов снова попадет в почву и будет непрерывно совершать все тот же круговорот. Таким образом, ограниченное, строго определенное количество одного физиологически-важного элемента, благодаря круговороту, может поддерживать жизнь животных и растений в течение бесконечно долгого времени, на подобие того, как ограниченное количество денежных знаков при непрерывном круговороте их из казны в частные руки и обратно, может в течение неопределенно долгого времени поддерживать товарообмен в государстве.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Одноклассники

Бактериальные болезни насекомых

Глава 2. Общие бактериальные болезни насекомых. Энтомопатогенные бактерии

Бактерии: места обитания, строение, процессы жизнедеятельности, значение

3. Процессы жизнедеятельности бактерии

3. а) Питание Используют питательные вещества только в относительно небольших молекул, проникающих внутрь клетки. Такой способ питания, характерный для всех организмов растительного происхождения, называют голофитным…

Грамотрицательные бактерии

В ней выделяют два слоя — пластичный и ригидный.

Последний образован одним, редко двумя слоями пептидогликана, содержание которого составляет не более 20% сухой массы клеточной стенки. На пептидогликановом каркасе расположены фосфолипиды…

Биополимеры бактериальной клеточной стенки

Грамположительные бактерии

Грамположительные бактерии имеют сравнительно просто организованную, но мощную клеточную стенку.

Она состоит преимущественно из множества слоев пептидогликана, составляющего до 90% её сухой массы…

Виды брожения

1.1 Бактерии

Бактерии. Используют в качестве возбудителей молочнокислого, уксуснокислого, маслянокислого брожения. Культурные молочнокислые бактерии используют при получении молочной кислоты, в хлебопечении, при производстве кисломолочных продуктов…

Влияние органических удобрений на микробиоту почвы

1.1.1 Бактерии

В составе сапротрофной микрофлоры богато представлены бактерии, особенно неспорообразующие формы.

В почвах севера, где более медленно идет минерализация, богато представлены гнилостные бактерии Pseudomonas fluorescens…

Клубеньковые бактерии и их роль в азотистом обмене

Клубеньковые бактерии бобовых культур

Данные палеонтологии свидетельствуют о том, что самыми древними бобовыми культурами, имевшими клубеньки, были некоторые растения, принадлежащие к группе Eucaesalpinioideae…

Маслянокислые бактерии как продуценты кислот

1.2 Бактерии, участвующие в маслянокислом брожении

К клостридиям относят большое количество видов бактерий, число которых постоянно возрастает.

Это один из самых крупных родов среди эубактерий…

Низшие растения

1.1 Отдел бактерии

К этому отделу относятся микроорганизмы, объединяемые вместе с сине-зелеными водорослями в группу прокариотов.

Гнилостные бактерии в толстом кишечнике – симптомы и лечение

Прокариоты (бактерии и сине-зеленые водоросли) отличаются от эукариотов строением клетки, лишенной типичного ядра…

Основы микробиологии, физиологии питания и санитарии

1.1 Бактерии

В мире микроорганизмов бактерий по численности около 4000 видов. Существуют три основные формы бактерий: шаровидная (кокки), палочковидная и извитая, или спиралевидная. Размеры бактерий ничтожно малы…

Отъёмно–доливное культивирование микроорганизмов – продуцентов

1.1.3 Пропионовокислое брожение и пропионовокислые бактерии

Пропионовокислые бактерии обитают в рубце и кишечнике жвачных животных (коров, овец); они участвуют там в образовании жирных кислот, главным образом пропионовой и уксусной…

Светящиеся бактерии и биолюминесценция

1.

Светящиеся бактерии

Самые мелкие живые излучатели — это светящиеся бактерии. По современной классификации светящиеся бактерии относятся к родам Photobacterium, Vibrio, Lucibacterium. Люминесцентными видами рода Photobacterium являются: P. phosphoreum и P. leiognathi…

Спорообразующие бактерии

Спорообразующие бактерии

По современным представлениям, аэробные спорообразующие бактерии, или бациллы, объединяются вотдельный род Bacillus семейства Bacillaceae.

Этот род, включающий много разнообразных видов…

Строение и принцип действия переносчиков

6.2 АТР-азы F1F0-типа из митохондрий, хлоропластов и бактерии

Большинство бактерий, а также митохондрии и хлоропласты содержат родственные АТРазы F1F0 — типа, которые используют трансмембранный протонный электрохимический градиент для синтеза АТР из ADP и неорганического фосфата…

Характеристика возбудителей порчи мясных, молочных и яйцепродуктов

Молочнокислые бактерии

Молочнокислые бактерии широко распространены в природе.

В определенных условиях они могут вызвать порчу многих пищевых продуктов. По морфологическим признакам их делят на стрептококки и палочки…

Протеолитическая активность бактерий как дифференциальный тест была испытана в связи с установленным свойством аэромонад активно разжижать желатин. Ранее этот тест не применялся, поскольку его постановка обычным способом занимала 1-5 и более суток.[ …]

Некоторые виды спорообразующих бактерий, (обладающие выраженными протопекти-назными и протеолитическими свойствами, обладают фитопатогенным действием. Ткани пораженных растений и плодов подвергаются мацерации, болезнь выражается в побурении или загнивании.[ …]

В этом случае о наличии на секторах среды Эндо бактерий группы кишечных палочек судят по обнаружению колоний грамотрицательных неспороносных палочек, сбраживающих глюкозу до кислоты и газа при (37 ± 0,5) °С и не обладающих протеолитической активностью.[ …]

К аминогетеротрофам принадлежит большинство патогенных бактерий, молочнокислые бактерии, риккетсии и т.

д. Эти микроорганизмы нуждаются в готовых аминокислотах. Многие из них имеют активные протеолитические ферменты, при помощи которых осуществляют расщепление белков до аминокислот, используемых затем для построения клеточных белков.[ …]

Патогенные и токсигенные спорообразующие анаэробы.

Некоторые из протеолитических и сахаролитических бактерий могут быть возбудителями болезней, особенно таких, как гангрена и столбняк (так называемые раневые инфекции). Возбудителями газовой гангрены являются такие виды анаэробных спороносных бактерий, как CI.

perfringens, CI. histolyticum, CI. septicum, CI. oedematiens, CI. bifermentans. Возбудитель столбняка - CI. tetani. Хотя патогенные бактерии не так часто встречаются в медицинской практике, как другие патогенные микроорганизмы, но вызываемые ими заболевания очень опасны, протекают быстро и часто с фатальным исходом.[ …]

Продуцентами многих ферментов, которые получают сейчас в производстве, являются грибы. Бактерии и актиномицеты также используются для этой цели.

Например, амилазы - ферменты, которые используются в хлебопечении,- получают из грибов и бактерии Вас. subtilis; протеолитические ферменты, расщепляющие белки, - из актиномицета Act. griseus; кератиназа и протеиназа продуцируются акти-номицетом Act.

Интересны попытки ряда исследователей качественно и количественно охарактеризовать различные физиологические типы бактерий, которые участвуют в неметаногенной ферментации. При этом авторы использовали метод селективных питательных сред, содержащих в качестве единственного источника углерода и энергии определенные органические субстраты. Недостатком данного метода является то, что на таких средах при подсчете могут быть пропущены бактерии, способные разлагать и использовать внесенный в среду субстрат в конструктивном обмене, но не способные получать из него энергию, и наоборот.

К сожалению, большая часть этих работ выполнена без применения анаэробной техники культивирования и касается аэробных и факультативно анаэробных бактерий, роль которых в процессах ферментации органических веществ, очевидно, менее значительна, чем анаэробных организмов.[ …]

Другие физиологические группы анаэробов участвуют в круговороте азотсодержащих веществ: разлагают белки, аминокислоты, пурины (протеолитические, пуринолитические бактерии).

Многие же способны активно фиксировать атмосферный азот, переводя его в органическую форму. Эти анаэробы способствуют повышению плодородия почв. Количество клеток протеолитических и сахаролитических анаэробов в 1 г плодородных почв достигает даже миллионов.

Особое значение имеют те группы микроорганизмов, которые участвуют в разложении труднодоступных форм органических соединений, таких, как пектиновые вещества и целлюлоза. Именно эти вещества составляют большую долю растительных остатков и являются главным источником углерода для почвенных микроорганизмов.[ …]

Изменение активности ферментов. Микроорганизмы, окисляющие спирты, отличались высокой активностью внеклеточных ферментов, особенно протеолитических. Микробные протеазы являются, как правило, внеклеточными ферментами и, как видно из данных табл.

5.4 и 6.5, обладают широкой видовой специфичностью. Внеклеточные и внутриклеточные протеазы микроорганизмов, окисляющих алканы, нафтены и арены, отличались различной активностью. У большинства исследованных нами видов и физиологических групп бактерий (см. табл. 4.5 и 5.4) протеазная активность в клетках выше, чем в культуральной жидкости. С другой стороны, активность клеточных протеаз более стабильна, чем в культуральной жидкости, и меньше подвержена влиянию внешних воздействий, включая и действие высоких концентраций солей.

В отличие от этого протеазная активность культуральной жидкости микроорганизмов, окисляющих спирты, превышала активность клеточных ферментов (табл. 6.5).[ …]

Денитрификация, являясь микробиологическим процессом, представляет собой лишь особую форму дыхания при нехватке кислорода.

Множество бактерий в установке по биологической очистке сточных вод, главным образом протеолитических бактерий, может обеспечить сокращение содержания азота и нитратов при отсутствии свободного кислорода и в присутствии пригодного субстрата, служащего источником водорода. Тем самым, химически связанный кислород может использоваться для метаболических процессов этих бактерий. Способность к денитрификации приобретается бактериями в процессе адаптации.

Углеводородный источник должен быть дозирован в минимальной пропорции, соответствующей содержанию нитратов.[ …]

Допускается высев из пробирок и флаконов производить на среду Эндо с добавкой молока или желатина, что даст возможность дифференцировать бактерии группы кишечных палочек от других водных сапрофитов, обладающих протеолитической активностью.[ …]

Резкое нарушение санитарного режима водоема наблюдается и при массовом отмирании водорослей.

При распаде синезеленых водорослей в результате деятельности протеолитических и аммонифицирующих- бактерий повышается содержание аммонийного азота, диоксида углерода, резко снижается содержание растворенного кислорода, что является причиной массовой гибели рыб. При массовом развитии водорослей затрудняется работа водозаборных сооружений, ухудшается фильтрация воды. Водоросли образуют на поверхности фильтров слизистую, не проницаемую для воды пленку, поэтому необходима частая промывка фильтров.

Запахи и привкусы, появляющиеся у воды в период цветения, при применении обычной технологической схемы очистки питьевой воды не устраняются.[ …]

Г. П. Калина разработал еще одну комбинированную среду - молочно-ингибиторную, введение в которую кристаллического фиолетового и теллурита калия обеспечивает элективные свойства в отношении большинства посторонних грамотрицательных и грамположительных бактерий.

Помимо этого, среда позволяет в одном посеве дифференцировать Str. faecalis (по редукции теллурита калия) и выделять протеолитический вариант по зоне про-теолиза вокруг колоний.[ …]

В образующем бактериальные клеточные оболочки мукопептиде содержится значительное количество остатков D-аналина с «неприродной» конфигурацией, что увеличивает устойчивость этих оболочек к действию протеолитических ферментов.[ …]

Очень любопытный тип взаимоотношений между растениями и насекомыми наблюдается у плотоядных («хищных») растений.

Известно около 450 видов этих растений, произрастающих в различных климатических зонах и использующих самые разнообразные типы ловушек. Добыча привлекается к ловушкам запахом душистых веществ или капельками нектара; в ее переваривании могут участвовать как собственные ферменты растения, так и симбиотические бактерии.

У тропических растений Nepenthes на внутренней поверхности конусовидной ловушки находятся специализированные пищеварительные железы (до 6000 желез на 1 см2), выделяющие протеолитические ферменты. Секрецию этих ферментов вызывает прикосновение насекомого к внутренней поверхности ловушки.[ …]

Принцип устройства ловчего аппарата непентесов почти идентичен ловушкам серраце-пиевых.

В верхней части внутренней стенки кувшина располагаются желёзки, сегрегирующие воск. По данным Б. Ю п и п е р а (1904), восковой налет - двуслойный; нижний слой состоит из тонкой сеточки выступов толщиной 1-2 мкм, а верхний - из налегающих друг на друга мельчайших чешуек, которые прилипают к лапкам насекомого и, отрываясь от нижнего слоя, заставляют насекомое, как па коньках, скользить вниз навстречу пищеварительным желёзкам на дно ловушки, погруженным в выделенную ими жидкость.

Гнилостные бактерии

Каждая такая желёзка диаметром до 00 мкм прикрыта нависающей в виде свода внутренней эпидермой кувшина; предполагается, что свод защищает желёзку от механического повреждения ее насекомыми. И. Хеслоп-Харрисон (1978) показала, что пищеварительные желёзки иепентовых выделяют протеолитический фермент пепентесип, активный только в кислой среде. Поэтому здесь же вырабатывается и муравьиная кислота, которая не только приводит фермент в активное состояние, но также играет роль антисептика. Полагают, что энергия переваривания белковых веществ у непентесов более высокая, чем у всех других насекомоядных растений: полная ассимиляция насекомого происходит за 5-8 ч.

Крупный кувшин напоминает желудок какого-нибудь солидного животного: количество жидкости, собирающейся в нем, доходит до 1-2 л, а насекомых, находящихся там, может быть несколько сотен.

В процессе разложения насекомых и размножения в жидкости бактерий появляется специфический запах гнили, привлекающий к растению новых насекомых.[ …]

Химический распад картофеля или мяса требует кипячения в растворе сильной кислоты, как это делается при проведении анализа на ХПК. Однако эти же самые продукты могут легко подвергаться разложению микроорганизмами или в желудке животного при намного более низкой температуре, без сильных минеральных кислот, но при наличии ферментов. Большинство ферментов не может быть экстрагировано из живых организмов без повреждения их функциональной способности.

Хотя вопрос об использовании ферментов не входит в рамки данной книги, специалисты в области санитарии должны знать, что ферментные добавки, продаваемые для ускорения процессов биологической очистки, неэффективны.

В этикетке на контейнере обычно употребляются в высшей степени научные термины для убеждения покупателя в достоинствах продукта, например: «Ферменты для сточной воды (или для анаэробного сбраживания, стабилизационных прудов, септиков и т. д.)… как минимум 10 млрд. колоний на грамм… отличная диастатическая, протеолитическая, ами-лолетическая и липолитическая активность… специальный состав ферментов, аэробных и анаэробных бактерий» и т.

д. В действительности бытовая сточная вода содержит в изобилии все эти ферменты, и добавлять их в нее по цене 5-10 долларов за фунт равносильно спуску денег в канализацию.[ …]

…Однажды ко мне на работу судмедэкспертами был доставлен гроб с телом утопленника, и оставался он там… четверо суток! Я видел, как открывали гроб и как люди, делавшие это, испачкались в выделениях трупа, а затем они брались за ручки двери, за кран умывальника…

Мне и другим также приходилось браться за эти предметы. Не знаю, как остальные, но для меня теперь каждое пятно на одежде, на руках ассоциируется с тем покойником, со страхом заражения трупным ядом.

И. К., Ростов-на-Дону

Прокомментировать письмо согласилась врач-патологоанатом Ольга ШУСТРОВА .

Вид мертвого тела всегда очень тяжелое зрелище, особенно на последних стадиях разложения.

А тем более вид утопленника. Дело в том, что в воде процессы распада тканей идут во много раз быстрее, и тело утонувшего всегда вздутое, зеленого цвета, и от него исходит сильнейший запах. Это все, вместе взятое, может очень тяжело повлиять на психику неподготовленного человека.

И такое долгое нахождение тела вне специального места, на глазах публики — недопустимо с любой точки зрения.

Тем не менее, есть смысл подробнее рассмотреть, что же мы в обиходе называем «трупным ядом» и насколько он опасен для людей, которым приходится в силу необходимости иметь дело с умершими. Трупный яд — это два химических соединения — кадаверин и путресцин, которые образуются при разложении тканей трупа. По сути, это конечный продукт разложения.

Эти соединения достаточно токсичны и появляются, как правило, на третий-четвертый день после смерти, когда уже наступает процесс гниения. Однако заразиться этими веществами здоровому человеку практически невозможно. Даже если «трупный яд» попадет в кровь, он почти сразу будет инактивирован в печени человека, а затем выведен из организма.

Более реальная опасность заражения при контакте с мертвым телом исходит от вирусов и бактерий. Дело в том, что ни один человек не может существовать без кишечной флоры, которая помогает нам расщеплять и переваривать пищу.

Сюда входят и кишечная палочка, и различные молочные бактерии, и многие другие микроорганизмы. После смерти, когда начинается разложение тканей, все эти палочки, бактерии получают огромную питательную среду для размножения.

И тут большое значение имеет то, от чего скончался человек. Если больной умер от сердечной недостаточности, инсульта, малокровия, в результате травмы, то все процессы разложения тканей идут у него медленно. Особенно, если покойный находится в холодном помещении.

Если же человек умер от какого-то гнойного заболевания: от пневмонии, сепсиса, менингита, то в его теле продолжают жить бактерии этих болезней. И при порезах, то есть при прямом попадании в кровь, этими бактериями можно заразиться.

Но в случае, если ваш организм здоров, не ослаблен, например, перенесенной болезнью или стрессом, все обычно заканчивается небольшим гнойником на месте пореза, который быстро проходит.

Заражение от трупа возможно только при сильно пониженной сопротивляемости организма, либо в том случае, если это особо опасные инфекции, вроде легочной чумы или сибирской язвы.

Другими словами, можно сказать, что тургеневский Базаров умер не от «трупного яда» как такового, а от болезнетворных бактерий, которые попали в его кровь при порезе, когда он препарировал труп человека, умершего от тифа.

Организм Базарова, вероятно, был истощен, или сказался стресс после неудавшегося романа с Одинцовой.

Но я еще раз хочу подчеркнуть, маловероятно, что здоровый человек, находящийся рядом с покойником, может чем-то от него заразиться. Дело в том, что бактерии, не говоря уже о кадаверине и путресцине, могут существовать только в пределах мертвого тела.

Они не ходят, не летают по помещению. Даже при попадании на слизистую глаз, носа, в полость рта эти бактерии и «трупный яд», при нормальном иммунитете, ничем человеку грозить не могут. Если они попали на кожу, то вполне достаточно вымыть руки с мылом и забыть про всякую опасность.

Кроме того, находясь, например, на похоронах, следуйте народным обрядам, самым простейшим: после выноса покойника вымойте стол, на котором стоял гроб, полы в комнате и коридоре, выбросьте половую тряпку и проветрите помещение.

Вернувшись с кладбища, умойтесь с мылом.

Какова роль гнилостных бактерий в природе и жизни человека

Вот и все.

Ах, нет! Еще одно. Старайтесь вести размеренный образ жизни, не перенапрягайтесь и не пейте сырую воду из-под крана — от нее можно подхватить инфекцию куда более серьезную, особенно после нынешнего половодья.

Записал Андрей БЕЛЯКОВ

Возникает гнилостная инфекция только в тех ранах, в которых присутствуют омертвевшая ткань, подвергающаяся распаду в результате активности гнилостных бактерий.

Подобный патологический процесс является осложнением обширных поражений мягких тканей, пролежней и открытых переломов. Гнилостная природа связана с активной жизнедеятельностью неклостридиальных анаэробов, присутствующих в области слизистой оболочки желудочно-кишечного тракта, женских органов мочеполовой системы и дыхательных путей.

Гнилостный распад тканей представляет собой анаэробный окислительный процесс белкового субстрата. В развитии этой патологии принимают участие такие микробы гниения, как грамотрицательные палочки (Fusobacterium, Bactericides), грамположительные палочки (Eubacterium, Propionibacterium, Actinomyces), протей, кишечная палочка и Veilonella.

Многие специалисты утверждают, что только 10% хирургических инфекций не относятся к эндогенному происхождению.

Это связано с тем, что практически вся микрофлора человека состоит из анаэробов. Анаэробная и смешанная флора и является составляющим наиболее значительных форм гнойно-воспалительных болезней в организме человека. Особенно часто такие процессы присутствуют в развитии гинекологических, абдоминальных и стоматологических заболеваний.

Инфекции мягких тканей появляются аналогично при наличии смешанной или анаэробной микрофлоры.

Смешанная микрофлора является не простой совокупностью бактерий, потому как большинство патологических процессов прогрессируют только тогда, когда соединяются два участника ассоциации.

Не только аэробы создают подходящие условия для жизнедеятельности анаэробов.

Обратный эффект также возможен. В качестве активаторов подавляющего большинства анаэробных патологических процессов инфекционного характера выступают полимикробы. Именно поэтому положительный результат от проводимого лечения достигается только при воздействии на каждую разновидность микроорганизмов.

Чаще всего гнилостные очаги возникают при следующих поражениях:

  • заражение мягких тканей;
  • заболевание легких;
  • болезни брюшины.

Существует несколько гнилостных микробов, которые могут спровоцировать развитие подобной инфекции в качестве самостоятельного заболевания.

Гнилостные бактерии, их характеристика и свойства

Обратить внимание следует на сочетание Spirochete bucallis и Bac. fusiformis. Совокупность данных микроорганизмов называется фузоспириллярным симбиозом. Самой грозной формой патологического процесса считается гнилостная флегмона, которая развивается на дне ротовой полости и называется также ангиной Людовика.

Симптоматика гнилостно процесса

В качестве самостоятельного процесса гнилостная инфекция развивается в области поражения мягких тканей достаточно редко, чаще она присоединяется к развитым анаэробным и гнойным инфекционным процессам.

Именно поэтому клиническая картина подобного осложнения практически во всех случаях нечеткая и сливается с проявлениями гнойных или анаэробных очагов.

Гнилостная форма инфекции протекает в сопровождении следующей симптоматики:

  • ярко выраженного подавленного состояния;
  • характерного снижения аппетита;
  • появления сонливости в дневное время;
  • скороспешного развития анемии.

В качестве самого раннего признака наличия в организме человека гнилостного распада выступает появление внезапного озноба.

Наличие экссудата (зловония) также считается важным первичным признаком развития патологических изменений в организме. Неприятный резковатый запах является ничем иным, как последствием жизнедеятельности гнилостных бактерий.

Не все разновидности анаэробов способствуют образованию веществ, вызывающих зловонный запах.

Чаще всего причиной тому является строгий и факультативный вид микроорганизмов. Отсутствие зловонности наблюдается иногда и при сочетании аэробов с анаэробами. Именно поэтому отсутствие столь неприятного симптома не может указывать на то, что инфекция имеет не гнилостное происхождение!

Данная инфекция имеет такие вторичные симптомы, как гнилостный характер повреждения мягких тканей.

В очагах поражения присутствуют омертвевшие ткани, ограниченные правильными очертаниями. Чаще всего серо-зеленый или серый бесструктурный детрит заполняет межтканевые щели или же приобретает разнообразные формы. Окраска экссудата чаще неоднородная и в некоторых случаях варьируется до коричневого цвета.

Гнилостная инфекционная природа раны может давать такие симптомы, как большое скопление гноя.

В данном случае экссудат в клетчатке разжижается. При поражении мышечной ткани его количество мизерно и в основном наблюдается в качестве диффузной пропитки поврежденной ткани. Если присутствует аэробная инфекция, то гной приобретает густую консистенцию. Цвет его варьируется от белого до желтого, окрас однородный, запах нейтральный.

Следует также обратить внимание на такие симптомы, как отсутствие отечности, гнойного заплыва, газообразования и крепитации на начальных развитиях патологического процесса.

Часто внешние признаки поражения мягкой ткани не соответствуют его глубине. Отсутствие гиперемии кожи приводит в замешательство многих хирургов, поэтому своевременная хирургическая обработка патологического очага может быть проведена несвоевременно.

Гнилостная инфекция начинает распространяться в области подкожной клетчатки, переходя в межфасциальное пространство.

При этом происходит некроз мышц, сухожилий и фасций.

Гнилостная инфекция развивается в трех формах:

  • присутствуют симптомы шоковых явлений;
  • отмечается бурно прогрессирующее течение;
  • отмечается вялое течение.

При первых двух формах инфекция протекает в сопровождении общей интоксикации: повышения температуры, появления озноба, развития почечной или печеночной недостаточности и снижения артериального давления.

Как справиться с данной патологией

Инфекция гнилостной природы является серьезной угрозой для здоровья человека, поэтому лечение прогрессирующего процесса должно быть начато как можно раньше.

Для эффективного устранения подобного заболевания проводятся следующие мероприятия:

  • создаются неблагоприятные условия для жизнедеятельности бактерий (удаление омертвевшей ткани, проведение антибактериальной терапии и широкого дренирования тканей);
  • назначение детоксикационной терапии;
  • проведение коррекции иммунного статуса и гемостаза.

Прогрессирующая инфекция гнилостного характера требует удаления пораженных тканей.

Лечение практически всегда требует хирургического вмешательства в связи с анатомическим расположением, особенностью течения и распространением патогенных микроорганизмов, радикальных результатов добиться получается не во всех случаях.

При низкой эффективности ранее принятых мер лечение проводится при помощи широких разрезаний гнойных очагов, иссечения некротизированной ткани, местного введения антисептиков и дренирования раны. Профилактика распространения гнилостного процесса в области здоровых тканей заключается в осуществлении ограничивающих хирургических разрезов.

Если инфекция имеет анаэробный характер, то лечение осуществляется при помощи постоянной перфузии или орошения раны растворами, содержащими перманганат калия и перекись водорода.

Эффективно в данном случае использование мазей, имеющих полиэтиленоксидную основу (Левомеколь, Левосин). Данные средства способствуют эффективному всасыванию экссудата, что сопровождается быстрым очищением раны.

Лечение антибиотиками проводится под контролем антибиотикограммы. Такое заболевание, как гнилостное поражение мягких тканей, может быть вызвано микроорганизмами, обладающими устойчивостью перед антибактериальной терапией. Именно поэтому подобное лечение должно осуществляться также и под наблюдением врача.

Медикаментозное лечение такого состояния, как инфекция гнилостно характера проводится при помощи следующих средств:

  • антибиотики – линкомицин, тиенам, рифампицин;
  • метронидазоловые противомикробные препараты – метрагил, метронидазол, тинидазол.

Лечение и профилактика детоксикации и гомеостаза назначается и проводится индивидуально в соответствии с симптоматикой и характером течения патологического процесса для каждого случая.

При бурном септическом течении принимают интракорпоральные детоксикационные меры: проводят эндолимфатическую терапию и назначают гемоинфузионную детоксикацию. В обязательном порядке показано проведение таких процедур, как УФОК (ультрафиолетового облучения крови) и ВЛОКА (внутривенного лазерного облучения крови).

Рекомендуется проведение аппликационной сорбации, которая подразумевает наложение сорбентов, антибиотиков и иммобилизированных ферментов на пораженный участок тканей. В случае развития осложнений в виде печеночной недостаточности назначается гемодиализ и применяется плазмаферез и гемсорбация.

Последствия

Для прогрессирующего гнилостного процесса характерно медленное течение.

Несмотря на это патогенные микроорганизмы неудержимо распространяются на прилежащие живые ткани с омертвевших. Даже костная ткань подвергается некрозу и может впоследствии загнивать, превращаясь постепенно в омертвевшую зловонную массу.

Гнилостный процесс не во всех случаях удается ограничить и даже после ампутации пораженного участка заболевание может продолжать прогрессировать.

Вследствие тяжелой общей интоксикации может наступить смерть.

Дисбактериоз кишечника ― это состояние, при котором соотношение бактерий, населяющих человеческий кишечник, нарушается. В такой ситуации полезных микроорганизмов становится меньше, а вредных ― больше. Это может привести к появлению болезней и нарушению работы ЖКТ.

Причины нарушений

Развитие патогенных микробов могут вызвать такие действия:

К сожалению, первая и вторая степень дисбактериоза практически не диагностируется. Поэтому симптомы развития бактерий в кишечнике можно определить только на третьей и четвертой стадии заболевания.

  1. Нарушение стула:
  • Страдающие дисбактериозом жалуются на постоянную диарею. Это происходит из-за усиления перистальтики кишечника и чрезмерного выделения кислот. Иногда стул может быть с примесями крови или же слизи. Экскременты имеют запах гнили;
  • Возрастное нарушение работы ЖКТ может привести к развитию запоров. Отсутствие нормальной флоры значительно снижает перистальтику.
  1. Вздутие живота:


  • Спазматическая боль. Чрезмерное образование газов способствует увеличению давления в кишечнике. Если пациент страдает от расстройства тонкого кишечника, он зачастую жалуется на спазматические боли в районе пупка. Если же нарушение микрофлоры наблюдается в толстом кишечнике, боль в животе с правой стороны;
  • Расстройства. Тошнота, отсутствие аппетита и рвота свидетельствуют о нарушении пищеварительных процессов;
  • Сухость, а также бледность кожных покровов, ухудшение состояния ногтей и волос, стоматит;
  • Аллергия. Нередко у пациентов появляются кожные высыпания и зуд. Как правило, их вызывают продукты, которые ранее нормально усваивались организмом;
  • Интоксикация. Быстрая утомляемость, головная боль, а также температура говорят о накоплении в организме продуктов распада.

Могут ли быть осложнения?

Развитие гнилостных бактерий в человеческом кишечнике может спровоцировать и осложнения:


  • Сепсис. Если патогенные микроорганизмы всосутся в кровь человека, это может вызвать ее заражение;
  • Энтероколит. Если пациент вовремя не обратился к врачу, у него может развиться хроническое воспаление толстого и тонкого кишечников;
  • Анемия. Отсутствие нормальной флоры не позволяет достаточному количеству микроэлементов и витаминов всасываться в кровь, что отражается на уровне гемоглобина в ней;
  • Перитонит. Большое количество «плохих» болезнетворных бактерий кишечника деструктивно влияет ткани ЖКТ, это может привести к выбросу содержимого в брюшную полость;
  • Снижение веса. Поскольку аппетит у человека снижается, это приводит к значительной потере веса.

Как лечить?

Лечение кишечника от вредных бактерий проводится с помощью специальных препаратов, которые угнетают развитие патогенной флоры. Виды медикаментов, их дозировку и продолжительность курса лечения могут определяться только врачами. Поэтому перед приемом лекарство обязательно проконсультируйтесь с доктором.

Препараты, применяемые при дисбактериозе:


  • Пробиотики. Лекарства содержат живые полезные бактерии, которые восстанавливают микрофлору. Их используют для лечения недуга на 2-4 стадии;
  • Пребиотики. Данные препараты имеют бифидогенное свойство. Они способны стимулировать размножение «хороших» микробов, которые впоследствии вытесняют «вредные» микроорганизмы;
  • Симбиотики. Это комбинированные виды препаратов, которые включают в себя и пребиотики, и прибиотики. Такие лекарства стимулируют рост и развитие недостающих полезных бактерий;
  • Сорбенты. Назначают во время интоксикации организма для вывода продуктов метаболизма;
  • Антибактериальные медикаменты. Чаще всего их назначают уже на 4-й степени заболевания, когда необходимо бороться с развитием вредных кишечных бактерий;
  • Противогрибковые лекарства. Если в экскрементах обнаруживаются грибковые образования по типу Кандиды, врач назначит противогрибковый препарат, который ликвидирует любые дрожжеподобные образования;
  • Ферменты. При нарушениях ЖКТ ферменты «помогают» полезным бактериям в переработке пищи.

Соблюдение диеты

Для коррекции микрофлоры очень важно соблюдать диету, которая назначается лечащим врачом. Первым делом из рациона нужно исключить любые виды спиртных напитков, жирную и слишком острую пищу, сладости (пирожные, торты, леденцы, конфеты), копченые продукты и соления.

Все эти продукты только увеличивают бродильные процессы, а это сказывается и на флоре кишечника.

Питаться необходимо часто, но при этом порции не должны быть огромными. Желательно в течение дня иметь от 4 до 5 приемов пищи. Чтобы улучшить работу ЖКТ, старайтесь не употреблять во время еды воду, кофе и газированные напитки. Любая жидкость уменьшает концентрацию желудочного сока, а это заставляет еду перевариваться дольше.

Продукты, которые увеличивают метеоризм, обязательно исключите:


  • фасоль;
  • горох;
  • газированная вода;
  • хлебобулочные изделия с отрубями;

А вот белки в рационе следовало бы увеличить. Отдавайте предпочтение только нежирному мясу, которое лучше есть либо в тушеном, либо в вареном виде.

Чтобы «активировать» работу своего кишечника, старайтесь чаще использовать зелень: петрушку, зеленый лук, укроп и сельдерей. «Зеленые помощники» усилят действие нормальной микрофлоры, что поможет в борьбе с развитием патогенной.