Холестеринметаболизирующая активность кишечных бактерий. Витамин F

Метаболизм холестерина в организме человека играет чрезвычайно важную роль. Холестерин выполняет многие физиологические функции:

  • является пластическим материалом - входит в состав мембраны клеток, обеспечивая их стабильность;
  • участвует в синтезе желчных кислот, необходимых для эмульгирования и всасывания жиров в тонком кишечнике;
  • служит предшественником стероидных гормонов коры надпочечников, а также участвует в синтезе половых гормонов (эстрадиол, тестостерон и др.), без холестерина производство этих гормонов невозможно;
  • участвует в синтезе витамина D.

В организме взрослого человека содержится порядка 140-150 г холестерина - приблизительно 2 мг на 1 кг массы тела. Всё это количество сосредоточено в 3 пулах:

  • быстро обменивающийся пул (пул А) - составляет около 30 г, включает холестерин содержащийся в печени и других паренхиматозных органах, в кишечной стенке и плазме крови. Обновление этого пула происходит ежедневно со скоростью приблизительно 1 г/сутки, следовательно, полное обновление пула составляет около 30 суток;
  • медленно обменивающийся пул (пул Б) - составляет около 50 г, включает холестерин всех других органов и тканей, кроме нервной системы и соединительной ткани;
  • очень медленно обменивающийся пул(пул В) - составляет 60 г, включает холестерин головного мозга, нервов и соединительной ткани. Скорость обновления этого пула очень мала и может исчисляться месяцами и годами, что в большей степени относится к белому веществу головного мозга.

Ежедневно организм расходует около 1200-1300 мг холестерина. Часть этого количества идёт на образование желчных кислот, стероидных гормонов, другая часть - выводится с калом, теряется со слущивающимся эпителием кожи и секретом сальных желез, используя запасы быстро обменивающегося пула. Для восполнения этих потерь, то есть для восстановления запасов быстро обменивающегося пула, организм синтезирует в сутки около 800-1000 мг холестерина, дополнительно получая около 400-500 мг с пищей.

Всасывание холестерина, поступающего с пищей, происходит в тонкой кишке. Стоит отметить, что в тонкую кишку поступает не только пищевой (экзогенный), но и эндогенный холестерин. В целом, в тонкий кишечник поступает порядка 1,8-2,5 г холестерина из следующих источников:

  • холестерин пищи - около 0,4-0,5 г/сутки;
  • холестерин желчи - 1-2 г/сутки;
  • холестерин эпителия желудочно-кишечного тракта и кишечного сока - около 0,5 г/сутки.

Часть холестерина эпителия желудочно-кишечного тракта и кишечного сока подвергается в толстой кишке воздействию ферментов микробной флоры, превращается в копростерин и выделяется с калом. Всасывание холестерина происходит в неэстерифицированной форме в составе смешанных жировых мицелл, состоящих из желчных кислот, жирных кислот, моноглицеридов, фосфолипидов.

Синтез холестерина осуществляется в клетках почти всех органов и тканей, при этом в гепатоцитах синтезируется около 80% всего количества, в стенке тонкой кишки - 10%, в коже - около 5%. Таким образом, основным источником эндогенного холестерина является печень.

В синтезе холестерина принимает участие большое количество ферментов. Ключевым, определяющим скорость процесса синтеза считается фермент гидроксиметил-глутарил-КоА-редуктаза (ГМГ-КоА-редуктаза). Блокирование активности этого фермента является важнейшим механизмом действия статинов - наиболее активных гипохолестеринемических средств.

Как указывалось выше, основным поставщиком эндогенного холестерина является печень, но она сама также нуждается в холестерине для обеспечения жизнедеятельности гепатоцитов. Потребность печени в холестерине удовлетворяется как за счёт его синтеза гепатоцитами, так и путём поступления его из крови.

При недостаточности холестерина в гепатоцитах (например, под влиянием приёма статинов или при различных патологических процессах в печени) происходит активация расположенных на поверхности гепатоцитов специфических рецепторов, осуществляющих распознавание и захват липопротеинов низкой плотности, богатых холестерином. Эти рецепторы участвуют в регуляции уровня холестерина в крови, который понижается с их активацией.

Метаболизм холестерина. Липопротеины

Холестерин поступает в организм с пищей и синтезируется в организме. Транспорт холестерина пищи и эндогенного холестерина к тканям осуществляется с участием ЛПОНП и ЛПНП. При участии фермента липопротеинлипазы в плазме крови происходит гидролиз триглицеридов из ЛПОНП и образование ЛПНП. ЛПНП переносят холестерин к тканям из печени. Обратный транспорт холестерина из тканей к месту его дальнейшей трансформации (печень) и удаления из организма осуществляется ЛПВП при участии фермента ЛХАТ (лецитин-холестерол-ацил-трансферазы). Основной путь удаления холестерина - его окисление в желчные кислоты. Часть холестерина удаляется с кожным салом, каловыми массами.

Холестерин синтезируется из ацетил-КоА. Процесс биосинтеза холестерина включает стадию образования мевалоновой кислоты, которая превращается через ряд промежуточных продуктов в сквален. Сквален подвергается циклизации и через ряд соединений превращается в холестерин. В организме холестерин используется для построения клеточных мембран, синтеза стероидных гормонов, витаминов группы Д, желчных кислот. Регуляция биосинтеза холестерина зависит от активности фермента, катализирующего реакцию синтеза мевалоновой кислоты. Основная доля холестерина удаляется из организма в виде желчных кислот, некоторое количество выделяется в кишечник в неизменном виде, или как вторичные желчные кислоты, под действием ферментов бактерий там восстанавливается в копростанол и холестанол, выводимых с фекалиями. Небольшая часть холестерина превращается в стероидные гормоны и в виде их конечных метаболитов выделяется с мочой.

Известно, что липиды, как простые, так и сложные, нерастворимы в водной среде сыворотки крови. Присутствуют они в ней и перемещаются от одного органа к другому в составе липопротеиновых комплексов, неравнозначных по своему химическому составу и строению. В связи с этим липопротеины сыворотки крови классифицируют:

А) по плотности - на хиломикроны (ХМ), липопротеины очень низкой плотности (ЛПОНП), липопротеины низкой плотности (ЛПНП), липопротеины высокой плотности (ЛПВП); липопротеины промежуточной плотности (ЛППП, флотирующие липопротеины), б) по электрофоретической подвижности - липопротеиды низкой плотности называют b-липопротеины (b-ЛП), липопротеины очень низкой плотности - пре-в-липопротеины (пре-b-ЛП); липопротеины высокой плотности - a-липопротеины (a-ЛП), хиломикроны – g-ЛП.

Хиломикроны (ХМ) - липопротеиновые комплексы, бо­гатые липидами (98-99%) и, прежде всего, триглицеридами (85-94%) и крайне бедны белком (менее 2%). По этой при­чине при электрофорезе они остаются на линии старта. Образуются ХМ в клетках тонкого кишечника из липидов пищи, после их переваривания в желудочно-кишечном тракте и ресинтеза. Сле­довательно, переносят они, в основном, экзогенные триглице­риды пищи.

Липопротеины очень низкой плотности (ЛПОНП) (пре-b-ЛП). В составе этих липопротеиновых комплексов находится еще много липидов (82-88%) и, особенно, триглицери­дов (55-65%). Повышается в них процент содержания бел­ков (12-18%). При электрофорезе они располагаются сразу зa ХМ, но перед липопротеинами низкой плотности, поэтому еще их называют пре-b-липопротеинами (пре-b-ЛП). Синтезируются ЛПОНП в печени и в небольшом количестве в кишечнике. Они переносят, в основном, эндогенные триглицериды.

Липопротеины низкой плотности (ЛПНП). В их составе относительно много холестерина (40-60%), повышается и доля белков (20-24%). По этой причине при электрофорезe они передвигаются быстрее, чем пре-b-липопротеины и их называют b-липопротеинами (b-ЛП). ЛПНП образуются из ЛПОНП при модифи­кации последних в плазме крови при участии липопротеинлипазы. Они переносят холестерин к тканям.

Липопротеины высокой плотности (ЛПВП). Эти липопро­теиновые комплексы наиболее богаты белками (45-50 %) и относительно бедны липидами (триглицеридов 3-6%, холе­стерина 17-23%, фосфолипидов 20-30%). При электрофо­резе они передвигаются с наибольшей скоростью. Их назы­вают a-липопротеинами (a-ЛП). Синтезируются они в пе­чени и выполняют транспортную функцию - переносят катаболизируемые липиды, в основном эфиры холестерина, с поверхности клеток различных тканей к печени, где они окисляются до конечных продуктов (желчных кислот).

Холестерин в организме человека бывает 2 видов: 1) холестерин , поступающий с пищей через ЖКТ и называемый экзогенный и 2) холестерин, синтезируемый из Ац - КоА - эндогенный.

С пищей ежедневно поступает 0,2 - 0,5 г, синтезируется 1 г (почти все клетки за исключением эритроцитов синтезируют холестерин, 80% холестерина синтезируется в печени.

Взаимоотношения экзо и эндогенного холестерина в определенной степени конкурентны - холестерин пищи ингибирует его синтез в печени.

Фонд холестерина, обнаруживаемого в ЖКТ состоит из 3-х частей: пищевого холестерина слизистой кишечника - может быть до 20% и холестерина желчи (холестерин желчи составляет в среднем 2,5 - 3,0г)

Всасывание холестерина происходит в основном в тощей кишке (пищевой холестерин всасывается почти полностью - если в пище его не очень много), холестерин желчи всасывается примерно на 50% - остальное экскретируется.

Всасывание холестерина осуществляется только после эмульгирования эфиров холестерина. Эмульгаторами являются желчные кислоты, моно- и диглицериды и лизолецитины. Холестериды гидролизуются холестеринэстеразой поджелудочной железы .

Пищевой и эндогенный холестерин находится в просвете кишечника в неэстерифицированной форме в составе сложных мицелл (желчные, жирные кислоты, лизолецитин), причем поступают в состав слизистой кишечника не вся мицелла целиком, а ее отдельные фракции. Сорбцил холестерина из мицелл - пассивный процесс, идущий по градиенту концентрации. Поступивший в клетки слизистой холестерин этерифицируется холестеринэстеразой или АХАТ (у человека это в основном олеиновая кислота). Из клеток слизистой кишечника холестерин поступает в лимфу в составе АОНП и ХМ, из них он переходит в ЛНП и ЛВП. В лимфе и крови 60-80% всего холестерина находится в этерифицированном виде.

Процесс всасывания холестерина из кишечника зависит от состава пищи: жиры и углеводы способствуют его всасыванию, растительные стероиды (структурные аналоги) блокируют этот процесс. Большое значение принадлежит желчным кислотам (все функции активируют - улучшают эмульгирование, всасывание). Отсюда значение лекарственных веществ, блокирующих всасывание желчных кислот.

Резкое повышение холестерина в пище (до 1,5 г ежедневно) может сопровождаться некоторой гиперхолестеринемией у здоровых людей.

Биосинтез холестерина

Клетки печени синтезируют 80% всего холестерина, примерно 10% холестерина синтезируется в слизистой кишечника. Холестерин синтезируется не только для себя, но и на «экспорт».

Митохондрии являются держателем субстрата для синтеза холестерина. Ацетил-КоА выходит в виде цитрата и ацетоацета.


Синтез холестерина идет в цитоплазме и включает 4 стадии.

1 стадия - образование мевалоновой кислоты :

2 стадия - образование сквалена (30 атом С)

Эта стадия (как и 1) начинается в водной фазе клетки, а заканчивается в мембране эндоплазматического ретикулума образованием водо-нерастворимого сквалена.

Затрачивается 6 молей мевалоновой кислоты, 18 АТФ, НАДФ НН с образованием цепочечной структуры из 30 С - сквалена.

3 стадия - циклизация сквалена в ланостерин.

4 стадия - превращение ланостерина в холестерин.

Холестерин - циклический ненасыщенный спирт. Содержит ядро циклопентан-пергидрофенантрена.

Регуляция биосинтеза холестерина

При высоком содержании холестерина, он угнетает активность фермента -гидрокси--метилурацил-КоА-редуктазы и синтез холестерина тормозится на стадии образования мевалоновой кислоты - это первая специфическая стадия синтеза. -гидрокси--метилурацил-КоА, не пошедший на синтез холестерина может пойти на синтез кетоновых тел. Это регуляция по типу обраьной отрицательной связи.

Транспорт холестерина

В плазме крови здоровых людей содержится 0,8 - 1,5 г/л ЛОНП, 3,2 - 4,5 г/л ЛНП и 1,3 - 4,2 г/л ЛВП.

Липидный компонент практически всех ЛП представлен наружной оболочкой, которая образована монослоем ФЛ и холестерина и внутренним гидрофобным ядром, состоящим из ТГ и холестеридов. Кроме липидов ЛП содержат белок - аполипопротеиды А, В или С. Свободный холестерин, находящийся на поверхности ЛП, легко обменивается между частицами: меченый холестерин, введенный в плазму в составе одной группы ЛП, быстро распределяется между всеми группами.

ХМ формируются в эпителиальных клетках кишечника, ЛОНП и ЛВП независимо друг от друга образуются в гепатоцитах.

ЛП обмениваются своим холестерином с мембранами клеток, особенно интенсивный обмен идет между ЛП и гепатоцитами, на поверхности которых есть рецепторы для ЛПНП. Процесс переноса холестерина в гепатоциты требует энергии.

Судьба холестерина в клетке

1. Связывание ЛНП с рецепторами фибробластов, гепатоцитов и др. клеток. На поверхности фибробласта содержится 7500 - 15000 рецепторов, чувствительных к холестерину. Рецепторы для ЛНП содержат эндотелиальные клетки, клетки надпочечников, яйцеклетки, разнообразные раковые клетки. Связывая ЛНП, клетки поддерживают определенный уровень этих ЛП в крови.

У всех обследованных здоровых людей интернализация ЛНП неизбежно сопровождается и связыванием с рецепторами клеток. Связывание и интернализация ЛНП обеспечивается одним и тем же белком, входящим в состав рецепторов ЛНП. В фибробластах больных с семейной гиперхолестеринемией, дефицитных по рецепторам ЛНП интернализация их редко угнетается.

2. ЛНП с рецептором подвергается эндоцитозу и включается в лизосомы. Там ЛНП (аполипопротеиды, холестериды) распадаются. Хлороквин - ингибитор лизосомального гидролиза подавляет эти процессы.

3. Появление в клетках свободного холестерина ингибирует ОМГ-КоА-редуктазу снижает эндогенный синтез холестерина. При концентрации ЛНП > 50 мкг/мл синтез холестерина в фибробластах подавляется полностью. Инкубация лимфоцитов 2-3 мин с сывороткой, освобожденной от ЛНП, увеличивает скорость синтеза холестерина в 5-15 раз. При добавлении ЛНП к лимфоцитам синтез холестерина замедляется. У больных с гомозиготной семейной гиперхолестеринемией снижения синтеза холестерина в клетках не происходит.

4. В клетках, способных превращать холестерин в другие стероиды ЛНП стимулирует синтез этих стероидов. Например, в клетках коры надпочечников 75% прегненалона образуется из холестерина, поступающего в составе ЛНП.

5. Свободный холестерин увеличивает активность ацетил-КоА- олестерилацилтрансферазы (АХАТ), приводя к ускоренной реэтерификации холестерина с образованием в основном олеата. Последний иногда накапливается в клетках в виде включений. Вероятно биологический смысл этого процесса заключается в борьбе с накоплением свободного холестерина.

6. Свободный холестерин снижает биосинтез рецептора ЛНП, который тормозит захват ЛНП клеткой и тем самым защищает ее от перегрузки холестерином.

7. Накопленный холестерин проникает в фосфолипидный бислой цитоплазматической мембраны. Из мембраны холестерин может перейти в ЛВП, циркулирующие с кровью.

Превращение холестерина в организме

То внимание, которое ранее уделяли метаболизму холестерина при обсуждении его роли в организме явно преувеличено. На первое место в настоящее время выдвинута структурная роль холестерина в биомембранах.

Внутриклеточно переносится в основном свободный холестерин. Эфиры холестерина внутриклеточно переносятся с очень низкой скоростью только с помощью специальных белков переносчиков или вообще не переносятся.

Эстерификация холестерина

Повышает неполярность молекулы. Этот процесс происходит как вне так и внутриклеточно, он всегда направлен на то, чтобы убрать молекулы холестерина с границы раздела липид / вода вглубь липопротеидной частицы. Таким путем происходит транспортирование или активация холестерина.

Внеклеточная эстерификация холестерина катализируется ферментом лецитинхолестеринацетилтрансферазой (ЛХАТ).

Лецитин + холестерин лизолецин + холестерид

В основном переносится линолевая кислота. Ферментативная активность ЛХАТ связана преимущественно с ЛВП. Активатором ЛХАТ является апо-А-I. Образующийся в результате реакции эфир холестерина погружается внутрь ЛВП. При этом концентрация свободного холестерина на поверхности ЛВП снижается и таким образом поверхность подготавливается для поступления новой порции свободного холестерина, который ЛВП способен снимать с поверхности плазматической мембраны клеток в том числе и эритроцитов. Таким образом ЛВП совместно с ЛХАТ функционирует как своеобразная «ловушка» холестерина.

Из ЛВП эфиры холестерина переносятся в ЛОНП, а из последних в ЛНП. ЛНП синтезируются в печени и там же катаболизируют. ЛВП приносят холестерин в виде эфиров в печень, а из печени удаляются в виде желчных кислот. У больных с наследственным дефектом ЛХАТ в плазме много свободного холестерина. У больных с поражением печени, как правило, наблюдается низкая активность ЛХАТ и высокий уровень свободного холестерина в плазме крови.

Таким образом, ЛВП и ЛХАТ представляют собой единую систему транспорта холестерина от плазматических мембран клеток различных органов в виде его эфиров в печень.

Внутриклеточно холестерин эстерифицируется в реакции катализируемой ацил-КоА-холестеринацетилтрансферазой (АХАТ).

Ацил-КоА + холестерин холестрид + HSKoA

Обогащение мембран холестерином активирует АХАТ.

В результате этого ускорение поступления или синтеза холестерина сопровождается ускорением его эстерификации. У человека в эстерификации холестерина чаще всего участвует линолевая кислота.

Эстерификацию холестерина в клетке следует рассматривать как реакция сопровождающуюся накоплением в ней стероида. В печени эфиры холестерина после гидролиза используются для синтеза желчных кислот, а в надпочечниках - стероидных гормонов.

Т.о. ЛХАТ разгружает от холестерина плазматические мембраны, а АХАТ - внутриклеточные. Эти ферменты не удаляют холестерин из клеток организма, а переводят его из одной формы в другую, поэтому роль ферментов эстерификации и гидролиза эфиров холестерина в развитии патологических процессов не следует преувеличивать.

Окисление холестерина.

Единственным процессом, необратимо удаляющим холестерин из мембран и ЛП является окисление. Оксигеназные системы обнаружены в гепатоцитах и клетках органов, синтезирующих стероидные гормоны (кора надпочечников, семенники, яичники, плацента).

Существуют 2 пути окислительного превращения холестерина в организме: один из них приводит к образованию желчных кислот, а другой к биосинтезу стероидных гормонов.

На образование желчных кислот расходуется 60-80% всего ежедневно образующегося холестерина, к то время как на стероидогенез - 2-4%.

Окислительное превращение холестерина в обеих реакциях протекает по многоступенчатому пути и осуществляется ферментной системой, содержащей различные изоформы цитохрома Р 450 . Характерной чертой окислительных превращений холестерина в организме является то, что его циклопентанпергидрофенантреновое кольцо не расщепляется и выводится из организма в неизменном виде. В противоположность этому боковая цепь легко отщепляется и метаболизирует.

Окисление холестерина в желчные кислоты служит основным путем выведения этой гидрофобной молекулы. Реакция окисления холестерина является частным случаем окисления гидрофобных соединений, т.е. процесса лежащего в основе детоксифицирующей функции печени.

Неполярная молекула в пространстве мембраны

окисление в монооксидазных системах печени и других органов

Полярная молекула в водном пространстве

Этерификация конъюгация связанные белки

Экскреторные органы

Моноокисдазная система.

Содержит цитохром Р 450 способный активировать молекулярный кислород (при участии НАДФН) и использует один из его атомов для окисления органических веществ, а второй для образования воды.

С 27 Н 45 ОН + НАДФН + Н + + О 2 С 27 Н 44 (ОН) 2 + НАДФ + Н 2 О

Лимитирующим является первый этап реакции (гидроксилирования в положении 7).

В печени из холестерина синтезируются первичные желчные кислоты (путь окисления холестерина). В просвете кишечника из них образуются вторичные желчные кислоты (под влиянием ферментативных систем микроорганизмов).

Первичными желчными кислотами являются холевая и дезоксихолевая. Здесь же они эстерифицируются глицином или таурином, превращаются в соответствующие соли и в таком виде секретируются в желчь.

Вторичные желчные кислоты возвращаются в печень. Этот цикл называется энтерогепатической циркуляцией желчных кислот обычно каждая молекула совершает в сутки 8-10 оборотов.

Уменьшение поступления желчных кислот в печень в результате дренирования желчного кровотока или применения ионообменных смол стимулирует биосинтез желчных кислот и 7- гидроксилазу. Введение в диету желчных кислот, наоборот, угнетает желчегенез и ингибирует активность фермента.

Под действием холестериновой диеты желчегенез у собак увеличивается в 3 - 5 раз, у кроликов и морских свинок такого увеличения не наблюдается. У больных атеросклерозом отмечено снижение скорости окисления холестерина печени. Вероятно это снижение является патологическим звеном развития атеросклероза.

Другой путь окисления холестерина приводит к образованию стероидных гормонов несмотря на то, что в количественном отношении он составляет всего несколько процентов обменивающегося холестерина. Это очень важный путь его использования. Холестерин является основным предшественником всех стероидных гормонов в надпочечниках, яичниках, семенниках и плаценте.

Цепь биосинтеза включает множество гидроксилазных реакций, катализируемых изоформами цитохрома Р 450 . Скорость процесса лимитируется его первой реакцией расщепления боковой цепи. Несмотря на, небольшой количественный вклад стероидогенеза в валовое окисление холестерина угнетение этого процесса в пожилом возрасте длящемся долгие годы может постепенно приводить к накоплению холестерина в организме и развитию атеросклероза.

В коже из дегидрированного холестерина под действием УФ-лучей образуется витамин D 3 , затем он транспортируется в печень.

В неизменном виде холестерин секретируется желчью. В желчи его содержание доходит до 4 г/л. Холестерин желчи это 1/3 холестерина кала, 2/3 его составляет не всосавшийся холестерин пищи.

Метаболизм кетоновых тел.

Ацетил-КоА, образовавшийся при окислении жирных кислот, сгорает в цикле Кребса или используется для синтеза кетоновых тел. К кетоновым телам относятся: ацетоацетат, -окусибутират, ацетон.

Кетоновые тела синтезируются в печени из ацетил-КоА.

Холестерин в патологии.

I. Холестериноз - изменения содержания холестерина в организме.

1. Не осложненный холестериноз - (физиологическое старение, старость, естественная смерть) проявляется накоплением холестерина в плазматических мембранах клеток в связи с уменьшением синтеза стероидных гормонов (стероидогенеза).

2. Осложненный - атеросклероз в форме ишемической болезни сердца (инфаркт миокарда), ишемия мозга (инсульт, тромбоз), ишемия конечностей, ишемии органов и тканей, связанный с уменьшением желчегенеза.

II. Изменения содержания холестерина в плазме крови.

1. Семейная гиперхолестеринэмия - обусловлена дефектом рецепторов для ЛНП. В результате холестерин не поступает в клетки и накапливается в крови. Рецепторы по химической природе являются белками. В результате развивается ранний атеросклероз.

III. Накопление холестерина в отдельных органах и тканях.

Болезнь Вольмана - первичный семейный ксантоматоз - накопление эфиров холестерина и триглицеридов во всех органах и тканях, причина дефицит лизосомальной холестеринэстеразы. Ранняя смерть.

Семейная гиперхолестенинэмия или -липопротеинэмия. Нарушается поглощение ЛНП клетками, повышается концентрация ЛНП, а также холестерина. При -липопротеинэмии наблюдается отложение холестерина в тканях, в частности в коже (ксантомы) и в стенках артерий. Отложение холестерина в стенках артерий главное биохимическое проявление атеросклероза.

Вероятность заболевания атеросклерозом тем выше, чем больше отношение концентраций ЛНП и ЛВП в крови (ЛНП снабжает клетки холестерином, ЛВП удаляет из них избыток холестерина). Холестерин образует в стенках сосудов бляшки. Бляшки могут изъязвляться и язвы зарастают соединительной тканью (образуется рубец), в которую откладываются соли кальция. Стенки сосудов деформируются, становятся жесткими, нарушается моторика сосудов, суживается просвет вплоть до закупорки.

Гиперхолестеринемия - главная причина отложения холестерина в артериях. Но важное значение имеют также первичные повреждения стенок сосудов. Повреждения эндотелия могут возникать в следствие гипертонии, воспалительных процессов.

В области повреждения эндотелия в стенку сосудов проникают компоненты крови, в том числе липопротеиды, которые поглощаются макрофагами. Мышечные клетки сосудов начинают размножаться и тоже фагоцитировать липопротеиды. Ферменты лизосом разрушают липопротеиды, кроме холестерина. Холестерин накапливается в клетке, клетка гибнет, а холестерин оказывается в межклеточном пространстве и инкапсулируется соединительной тканью - образуется атеросклеротическая бляшка.

Между отложением холестерина в артериях и липопротеидами крови происходит обмен, но при гиперхолестеринемии преобладает поток холестерина в стенки сосудов.

Методы профилактики и лечения атеросклероза направлены на уменьшение гиперхолестеринемии. Для этого применяют малохолестериновую диету, лекарства увеличивающие эксткрецию холестерина или ингибирующие его синтез, прямое удаление холестерина из крови методом гемодиффузии.

Холестирамин связывает желчные кислоты и исключает их из кишечно-печеночного кровобращения, что приводит к усилению окисления холестерина в желчные кислоты.

Биологическая химия Лелевич Владимир Валерьянович

Глава 22. Метаболизм холестерола. Биохимия атеросклероза

Холестерол – стероид, характерный только для животных организмов. Основное место его образования в организме человека – печень, где синтезируется 50% холестерола, в тонком кишечнике его образуется 15–20%, остальное количество синтезируется в коже, коре надпочечников и половых железах. Источники формирования фонда холестерола и пути его расходования представлены на рис 22.1.

Рис. 22.1. Формирование и распределение фонда холестерола в организме.

Холестерол организма человека (суммарное количество около 140 г) условно можно разделить на три пула:

1. пул А (~ 30 г), быстрообменивающийся, состоит из ХС кишечной стенки, плазмы крови, печени и других паренхиматозных органов, обновление происходит за 30 сут (1 г/сут);

2. пул Б (~ 50 г), медленнообменивающийся ХС остальных органов и тканей;

3. пул В (~ 60 г), очень медленнообменивающийся ХС спинного и головного мозга, соединительной ткани, скорость обновления исчисляется годами.

Синтез холестерола происходит в цитозоле клеток. Это один из самых длинных метаболических путей в организме человека. Он проходит в 3 этапа: первый заканчивается образованием мевалоновой кислоты, второй – образованием сквалена (углеводород линейной структуры, состоящий из 30 углеродных атомов). В ходе третьего этапа сквален превращается в молекулу ланостерола, далее происходит 20 последовательных реакций, превращающих ланостерол в холестерол.

В некоторых тканях гидроксильная группа холестерола этерифицируется с образованием эфиров. Реакция катализируется внутриклеточным ферментом АХАТ (ацилКоА:холестеролацилтрансферазой). Реакция этерификации происходит также в крови в ЛПВП, где находится фермент ЛХАТ (лецитин:холестеролацилтрансфераза). Эфиры холестерола – форма, в которой он транспортируется кровью или депонируется в клетках. В крови около 75% ХС находится в виде эфиров.

Регуляция синтеза холестерола осуществляется путем влияния на активность и количество ключевого фермента процесса – 3-гидрокси-3-метилглутарил-КоА-редуктазы (ГМГ-КоА-редуктазы).

Это достигается двумя способами:

1. Фосфорилирование/дефосфорилирование ГМГ-КоА-редуктазы. Инсулин стимулирует дефосфорилирование ГМГ-КоА-редуктазы, переводя её тем самым в активное состояние. Следовательно, в абсорбтивный период синтез ХС увеличивается. В этот период увеличивается и доступность исходного субстрата для синтеза – ацетил-КоА. Глюкагон оказывает противоположное действие: через протеинкиназу А стимулирует фосфорилирование ГМГ-КоА-редуктазы, переводя её в неактивное состояние. В результате синтез ХС в постабсорбтивном периоде и при голодании ингибируется.

2. Ингибирование синтеза ГМГ-КоА-редуктазы. ХС (конечный продукт метаболического пути) снижает скорость транскрипции гена ГМГ-КоА-редуктазы, подавляя таким образом собственный синтез, аналогичный эффект вызывают и жёлчные кислоты.

Транспорт холестерола кровью осуществляется в составе ЛП. ЛП обеспечивают поступление в ткани экзогенного ХС, определяют его потоки между органами и выведение из организма. Экзогенный ХС доставляется в печень в составе остаточных ХМ. Там вместе с синтезированным эндогенным ХС он формирует общий фонд. В гепатоцитах ТАГ и ХС упаковываются в ЛПОНП, и в таком виде секретируются в кровь. В крови ЛПОНП под действием ЛП-липазы, гидролизующей ТАГ до глицерола и жирных кислот, превращаютя сначала в ЛППП, а затем и в ЛПНП, содержащие до 55% ХС и его эфиров. ЛПНП – основная транспортная форма ХС, в которой он доставляется в ткани (70% ХС и его эфиров в крови находится в составе ЛПНП). Из крови ЛПНП поступают в печень (до 75%) и другие ткани, которые имеют на своей поверхности рецепторы ЛПНП.

Если количество ХС, поступающего в клетку, превышает её потребность, то синтез рецепторов ЛПНП подавляется, что уменьшает поток ХС из крови. При снижении концентрации свободного ХС в клетке, наоборот, синтез рецепторов активируется. В регуляции синтеза рецепторов ЛПНП участвуют гормоны: инсулин, трийодтиронин и половые гормоны увеличивают образование рецепторов, а глюкокортикоиды – уменьшают.

В так называемом «обратном транспорте холестерола», т.е. пути, обеспечивающем возвращение ХС в печень, основную роль играют ЛПВП. Они синтезируются в печени в виде незрелых предшественников, которые практически не содержат ХС и ТАГ. В крови предшественники ЛПВП насыщаются ХС, получая его из других ЛП и мембран клеток. В переносе ХС в ЛПВП участвует фермент ЛХАТ, находящийся на их поверхности. Этот фермент присоединяет остаток жирной кислоты от фосфатидилхолина (лецитина) к ХС. В результате образуется гидрофобная молекула эфира холестерола, которая перемещается внутрь ЛПВП. Таким образом, незрезые ЛПВП, обогащаясь ХС, превращаются в ЛПВП 3 – зрелые и более крупные по размерам частицы. ЛПВП 3 обменивают эфиры холестерола на ТАГ, содержащиеся в ЛПОНП и ЛППП при участии специфического белка, переносящего эфиры холестерола между липопротеинами. При этом ЛПВП 3 превращаются в ЛПВП2, размер которых увеличивается за счет накопления ТАГ. ЛПОНП и ЛППП под действием ЛП-липазы превращаются в ЛПНП, которые в основном и доставляют ХС в печень. Небольшая часть ХС доставляется в печень ЛПВП2 и ЛППП.

Синтез жёлчных кислот. В печени из ХС синтезируется 500–700 мг жёлчных кислот в сутки. Их образование включает реакции введения гидроксильных групп при участии гидроксилаз и реакции частичного окисления боковой цепи ХС (Рис. 22.2):

Рис. 22.2. Схема образования жёлчных кислот.

Первая реакция синтеза – образование 7-a-гидроксихолестерола – является регуляторной. Активность фермента, катализирующего эту реакцию, ингибируется конечным продуктом пути – жёлчными кислотами. Еще одним механизмом регуляции является фосфорилирование/дефосфорилирование фермента (активна фосфорилированная форма 7-a-гидроксилазы). Возможна и регуляция путем изменения количества фермента: ХС индуцирует транскрипцию гена 7-a-гидроксилазы, а жёлчные кислоты репрессируют. Тиреоидные гормоны индуцируют синтез 7-a-гидроксилазы, а эстрогены – репрессируют. Такое влияние эстрогенов на синтез жёлчных кислот объясняет, почему желчнокаменная болезнь встречается у женщин в 3–4 раза чаще, чем у мужчин.

Образовавшиеся из ХС холевую и хенодезоксихолевую кислоты называют «первичными жёлчными кислотами». Основная масса этих кислот подвергается коньюгации – присоединению молекул глицина или таурина к карбоксильной группе жёлчной кислоты. Коньюгация начинается с образования активной формы желчных кислот – производных КоА, затем присоединяются таурин или глицин, и в результате образуется 4 варианта коньюгатов: таурохолевая и таурохенодезоксихолевая, гликохолевая и гликохенодезоксихолевая кислоты. Они являются значительно более сильными эмульгаторами, чем исходные жёлчные кислоты. Коньюгатов с глицином образуется в 3 раза больше, чем с таурином, так как количество таурина в организме ограничено. В кишечнике небольшое количество коньюгатов первичных жёлчных кислот под действием ферментов бактерий превращаются во вторичные жёлчные кислоты. Дезоксихолевая кислота, образующаяся из холевой, и литохолевая, образующаяся из дезоксихолевой, хуже растворимы и медленнее всасываются в кишечнике.

Около 95% жёлчных кислот, попавших в кишечник, возвращаются в печень через воротную вену, затем опять секретируются в жёлчь и повторно используются в эмульгировании жиров. Этот путь жёлчных кислот называется энтерогепатической циркуляцией. С фекалиями в основном удаляются вторичные жёлчные кислоты.

Желчнокаменная болезнь (ЖКБ) – патологический процесс, при котором в жёлчном пузыре образуются камни, основу которых составляет ХС.

Выделение ХС в жёлчь должно сопровождаться пропорциональным выделением жёлчных кислот и фосфолипидов, удерживающих гидрофобные молекулы ХС в мицеллярном состоянии. Причинами, приводящими к изменению соотношения жёлчных кислот и ХС в жёлчи являются: пища, богатая ХС, высококалорийное питание, застой жёлчи в жёлчном пузыре, нарушение энтерогепатической циркуляции, нарушения синтеза жёлчных кислот, инфекции жёлчного пузыря.

У большинства больных ЖКБ синтез ХС увеличен, а синтез жёлчных кислот из него замедлен, что приводит к диспропорции количества ХС и жёлчных кислот, секретируемых в жёлчь. В итоге ХС начинает осаждаться в жёлчном пузыре, образуя вязкий осадок, который постепенно затвердевает. Иногда он пропитывается билирубином, белками и солями кальция. Камни могут состоять только из ХС (холестериновые камни) или из смеси ХС, билирубина, белков и кальция. Холестериновые камни обычно белого цвета, а смешанные – коричневые разных оттенков.

В начальной стадии образования камней можно применять в качестве лекарства хенодезоксихолевую кислоту. Попадая в жёлчный пузырь, она постепенно растворяет холестериновые камни, однако это медленный процесс, длящийся несколько месяцев.

Биохимия атеросклероза

Атеросклероз – это патология, характеризующаяся появлением атерогенных бляшек на внутренней поверхности сосудистой стенки. Одна из основных причин развития такой патологии – нарушение баланса между поступлением холестерола с пищей, его синтезом и выведением из организма. У пациентов, страдающих атеросклерозом, повышены концентрации ЛПНП и ЛПОНП. Существует обратная зависимость между концентрацией ЛПВП и вероятностью развития атеросклероза. Это согласуется с представлениями о функционировании ЛПНП как переносчиков ХС в ткани, а ЛПВП – из тканей.

Базовой метаболической «предпосылкой» развития атеросклероза является гиперхолестеролемия. (повышенное содержание холестерола в крови).

Гиперхолестеролемия развивается:

1. вследствие избыточного поступления ХС, углеводов и жиров;

2. генетической предрасположенности, заключающейся в наследственных дефектах структуры рецепторов ЛПНП или апоВ-100, а также в повышенном синтезе или секреции апоВ-100 (в случае семейной комбинированной гиперлипидемии, при которой в крови повышены концентрации и ХС и ТАГ).

Важную роль в механизмах развития атеросклероза играет модифицирование ЛП. Изменения нормальной структуры липидов и белков в составе ЛПНП делает их чужеродными для организма и поэтому более доступными для захвата фагоцитами.

Модифицирование ЛП может происходить по нескольким механизмам:

1. гликозилирование белков, происходящее при увеличении концентрации глюкозы в крови;

2. перекисная модификация, приводящая к изменениям липидов в липопротеинах и структуры апоВ-100;

3. формирование аутоиммунных комплексов ЛП-антитело (изменённые ЛП могут становиться причиной образования аутоантител).

Модифицированные ЛПНП поглощаются макрофагами. Этот процесс не регулируется количеством поглощенного ХС, как в случае его поступления в клетки через специфические рецепторы, поэтому макрофаги перегружаются ХС и превращаются в «пенистые клетки», которые проникают в субэндотелиальное пространство. Это приводит к формированию липидных пятен или полосок в стенке кровеносных сосудов. На этой стадии эндотелий сосудов может сохранять свою структуру. При увеличении количества пенистых клеток происходит повреждение эндотелия. Повреждение способствует активации тромбоцитов. В результате они секретируют тромбоксан, который стимулирует агрегацию тромбоцитов, а также начинают продуцировать тромбоцитарный фактор роста, стимулирующий пролиферацию гладкомышечных клеток. Последние мигрируют из медиального во внутренний слой артериальной стенки, способствуя таким образом росту бляшки. Далее происходит прорастание бляшки фиброзной тканью, клетки под фиброзной оболочкой некротизируются, а ХС откладывается в межклеточном пространстве. На последних стадиях развития бляшка пропитывается солями кальция и становится очень плотной. В области бляшки часто образуются тромбы, перекрывающие просвет сосуда, что приводит к острому нарушению кровообращения в соответствующем участке ткани и развитию инфаркта.

Из книги Краткая история биологии [От алхимии до генетики] автора Азимов Айзек

Глава 12 Метаболизм ХимиотерапияБорьба с бактериальными заболеваниями во многом проще, чем с вирусными. Как уже было показано, бактерии проще размножаются в культуре. Бактерии более уязвимы. Живя вне клетки, они производят ущерб организму, отнимая у него питание либо

Из книги Человек как животное автора Никонов Александр Петрович

Глава 2 Биохимия экономики Также любят они соседа и жмутся к нему, ибо им необходимо тепло. Ницше Ф. Так говорил Заратустра Как правило, люди отвечают добром на добро и испытывают непроизвольную симпатию к тем, кто относится к ним хорошо. Это естественное чувство симпатии

Из книги Мозг в электромагнитных полях автора Холодов Юрий Андреевич

Глава 9. Мембраны и биохимия Электронный микроскоп показал, что биохимические реакции в живой клетке протекают с активным участием мембранных процессов. Это заключение относится и к нервной, и к глиальной клетке, и к внутриклеточным органеллам.Следует признать, что

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Глава 8. Введение в метаболизм Обмен веществ или метаболизм – это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Процесс метаболизма, сопровождающийся образованием более простых

Из книги автора

Глава 12. Биохимия гормонов Гормоны (от греческого hormaino – побуждаю) – это биологически активные вещества, которые выделяются эндокринными клетками в кровь или лимфу и регулируют в клетках-мишенях биохимические и физиологические процессы.В настоящее время предложено

Из книги автора

Глава 14. Биохимия питания Наука о пище и питании называется нутрициологией (от греч. нутрицио - питание). Нутрициология или наука о питании – это наука о пище, пищевых веществах и других компонентах, содержащихся в продуктах питания, их взаимодействии, роли в поддержании

Из книги автора

Метаболизм фруктозы Значительное количество фруктозы, образующее при расщеплении сахарозы, прежде чем поступить в систему воротной вены, превращается в глюкозу уже в клетках кишечника. Другая часть фруктозы всасывается с помощью белка-переносчика, т.е. путем

Из книги автора

Метаболизм галактозы Галактоза образуется в кишечнике в результате гидролиза лактозы.Нарушение метаболизма галактозы проявляется при наследственном заболевании – галактоземии. Оно является следствием врожденного дефекта фермента

Из книги автора

Биохимия атеросклероза Атеросклероз – это патология, характеризующаяся появлением атерогенных бляшек на внутренней поверхности сосудистой стенки. Одна из основных причин развития такой патологии – нарушение баланса между поступлением холестерола с пищей, его

Из книги автора

Биохимические основы лечения атеросклероза. Важным лечебным фактором, снижающим риск развития гиперхолестеролемии и атеросклероза, является гипокалорийная и гипохолестериновая диета, Поступление ХС с пищей не должно превышать 300 мг/сут. К лечебным и профилактическим

Из книги автора

Глава 25. Метаболизм отдельных аминокислот Метаболизм метионина Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий

Из книги автора

Глава 28. Биохимия печени Печень занимает центральное место в обмене веществ и выполняет многообразные функции:1. Гомеостатическая - регулирует содержание в крови веществ, поступающих в организм с пищей, что обеспечивает постоянство внутренней среды организма.2.

Из книги автора

Глава 30. Биохимия крови Кровь – жидкая подвижная ткань, перемещающаяся по сосудам. Выполняет роль транспортного и коммуникативного средства, интегрирующего обмен веществ в различных органах и тканях в единую систему. Общая характеристика Общий объем крови у взрослого

Из книги автора

Глава 31. Биохимия почек Почка – парный орган, основной структурной единицей которого является нефрон. Благодаря хорошему кровоснабжению почки находятся в постоянном взаимодействии с другими тканями и органами и способны влиять на состояние внутренней среды всего

Из книги автора

Глава 33. Биохимия мышечной ткани Подвижность является характерным свойством всех форм жизни - расхождение хромосом в митотическом аппарате клеток, воздушно-винтовые движения жгутиков бактерий, крыльев птиц, точные движения человеческой руки, мощная работа мышц ног. Все

Из книги автора

Глава 34. Биохимия соединительной ткани Соединительная ткань составляет около половины от сухой массы тела. Все разновидности соединительной ткани, несмотря на их морфологические различия, построены по общим принципам:1. Содержит мало клеток в сравнении с другими