Иммунотерапия. В нии онкологии спасают пациентов с запущенными формами рака с помощью вакцины Рак груди применение дендритных клеток

Онкоиммунология является достаточно новым и перспективным направлением в лечении рака. В клинике онкоиммунологии в НМИЦ им. Н.Н. Петрова в рамках этого направления успешно применяется инновационная методика – вакцинотерапия дендритными клетками. Вот уже полтора десятка лет она показывает хорошие результаты лечения при таких видах онкологических заболеваний, как кожная меланома, саркома мягких тканей, рак кишечника, а также рак почки. С 2010 года коллективом специалистов научного отдела онкоиммунологии проведено более 1580-и лечебных циклов для 203-х больных. Результаты впечатляют. Поэтому именно сейчас пришло время для определения путей более широкого использования методики и расширения спектра заболеваний, в борьбе с которыми она может применяться.

Центр развивает онкоиммунологию с 1998 года

Иммунотерапия как новый подход в лечении онкологических заболеваний, была создана в Санкт-Петербурге, в НМИЦ им. онкологии Н.Н. Петрова, где в 1998-м году начала работу лаборатория онкоиммунологии. Именно на базе этой лаборатории удалось установить, что собственные иммунные клетки пациента можно «обучить» распознавать опухолевый процесс в организме.

Онкоиммунология преодолевает трудности лечения рака

Многие опухоли сложны в лечении именно потому, что они способны маскироваться от иммунных клеток, а порой и инактивировать их. Поэтому стандартные методы лечения рака, применяемые в клиниках: хирургия, химиотерапия, лучевая терапия, гормональная терапия – остаются без поддержки со стороны иммунной системы пациента. Однако в лаборатории онкоиммунологии был найден способ «перезапустить» иммунитет пациента, предварительно настроив его на конкретную опухоль. Для этого используются дендритные клетки из костного мозга (они всегда присутствуют в крови наряду с лейкоцитами, лимфоцитами и прочими клетками), задача которых предъявить основным защитным клеткам организма – Т-лимфоцитам – белковые молекулы, характерные для опухоли (антигены).

Создание вакцины из дендритных клеток

Процесс проходит в специальном сосуде, куда помещается подготовленная кровь, ранее взятая у пациента, а также «обломки» опухоли, выделенной из его же организма, либо антигены похожей опухоли, имеющиеся в банке НМИЦ. Дендритные клетки оседают на стенках сосуда и начинают активно поглощать (фагоцитировать) опухолевые частицы, формируя на своей поверхности специфический «обучающий сигнал». С последующим введением содержащей такие дендритные клетки суспензии в организм, Т-лимфоциты получают возможность «узнать» опухоль и начать атаковать её.

Детям – бесплатное лечение

Патент на онкоиммунологический способ лечения "Иммунотерапия костно-мозговыми дендритными клетками больных солидными опухолями" зарегистрирован НИИ им. Н.Н. Петрова в 2003 г. В 2008 г. запатентована вакцина на основе дендритных клеток. В 2010 г. получено разрешение Минздрава РФ на применение этой медицинской технологии в клинической деятельности. На сегодняшний день, лечение индивидуальными противоопухолевыми вакцинами доступно только для детей; для взрослых лечение платное.

Отзывы пациентов

Консультация и назначение лечения

Лечение индивидуальной противоопухолевой вакциной на основе дендритных клеток пациента в клинике онкоиммунологии в Санкт-Петербурге может быть назначено пациентам, соответствующим определенным критериям включения и исключения, как взрослым, так и детям.

Хотим предупредить Вас, что, к сожалению, вакцинотерапия это не панацея. Она применяется при сОлидных опухолях (опухолях органов), в комплексе с другими методами лечения. Эффективность вакцин - стойкая ремиссия, зафиксирована у 46% пациентов, которые получали этот вид терапии.

Для того, чтобы определить возможность прохождения вакцинотерапии необходимо:

  1. Записаться на первичный бесплатный прием онколога НИИ онкологии им. Н.Н. Петрова.
  2. Врач соберет анамнез, уточнит, какие обследования необходимо сделать. Даст направление на иммунологическое и иные исследования, с результатами которых нужно записаться на прием онкоиммунолога НИИ.


В зависимости от заболевания врач первичного приема может отменить то или иное исследование из п. 1-3 стандартного списка, а также уточнить параметры исследования 4. Стандартный список см. ниже.

Обследования, результаты которых необходимо иметь на руках во время первичного приема онкоиммунолога (должны быть выполнены в течение последних 30 дней):

  1. МРТ головного мозга, брюшной полости и малого таза с контрастированием
    Стоимость: 14000 руб. Примечание: при условии того, что делается МРТ 3-х зон одновременно и производится одно введение контрастного вещества.
  2. КТ органов грудной клетки с контрастированием
    Стоимость: 6 000 руб.
  3. Остеосцинтиграфия
    Стоимость: 5 900 руб.
  4. Биохимический анализ крови: АлТ, АсТ, ГГТ, билирубин общий, ЛДГ, общий кальций, мочевина, мочевая кислота, креатинин, общий белок, глюкоза, железо, СРБ, ЛДГ.
    Стоимость: 3380 руб. + 200 руб. забор крови. Срок выполнения: 1-2 рабочих дня.
  5. Расширенный иммунный статус 9 параметров
    Стоимость: 5100 руб. Срок выполнения: 5-14 рабочих дней. Материал: кровь.
    + 200 руб. забор крови
  6. Клинический анализ крови развернутый (с подсчетом лейкоцитарной формулы, подсчетом тромбоцитов, описанием морфологии клеток)
    Стоимость: 700 руб. + 200 руб. забор крови. Срок выполнения: 1-2 рабочих дня.
    + 200 руб. забор крови
  7. Во время приема онкоиммунолог, как правило, назначает пациенту молекулярно-генетическое исследование. Его стоимость варьируется от 2800 до 8700 руб. (в зависимости от диагноза и показателей, которые надо проанализировать).
    Срок выполнения от 14 до 30 рабочих дней. Материал: блоки, стекла (предварительно пересмотренные в лаборатории НМИЦ онкологии им. Н.Н. Петрова).

Примечание:

МРТ и КТ выполняются с промежутком 1 день.

Обследования после остеосцинтиграфии проводятся через 3 дня (начиная с дня, следующего за днем проведения этого обследования).

Внимание!! Мы ждем Вас на консультации в клинике онкоиммунологии со всеми имеющимися медицинскими документами и их ксерокопиями: эпикризами, результатами обследований и анализов за прошедшие периоды (чтобы врач мог проанализировать динамику) и пр. Обязательно возьмите с собой свою гистологию: блоки и стекла.

Статья на конкурс «био/мол/текст»: «Рак» - как много тревожных мыслей вызывает это слово! Около 7 миллионов человек в год умирают от рака. Трудно переоценить опасность подобных заболеваний, именно поэтому ученые заняты поисками действенного метода лечения различных типов злокачественных опухолей. Существуют некоторые виды терапии онкологических заболеваний, но достаточно ли они эффективны?

Генеральный спонсор конкурса - компания : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила фирма «Инвитро ».


«Книжный» спонсор конкурса - «Альпина нон-фикшн »

Что не так с этими опухолевыми клетками?

В человеческом организме происходит постоянное обновление клеточной структуры, старые клетки умирают, новые рождаются. Но наряду со здоровыми клетками, в результате мутаций (то есть изменений набора наследственной информации под действием внешних или внутренних сил) образуются нетипичные клетки. Такие «эксцентрики» чаще всего не могут правильно выполнять свои функции, и при неблагоприятном сценарии их появление приводит к образованию злокачественной опухоли.

В норме такие атипичные клетки уничтожает иммунная система, которая является своеобразной армией, противостоящей врагам организма. Но особенность злокачественных клеток в их способности «ускользать» от иммунного контроля. Делают это они очень изощренно и крайне эффективно, так, что иммунные молекулы-разведчики часто не могут обнаружить их (рис. 1), а клетки-киллеры деактивируются из-за экспрессии опухолевыми клетками блокирующих факторов.

Рисунок 1. Умелая маскировка опухолевых клеток.

Дополнительным фоном для развития опухолевых клеток является ослабление иммунитета в результате болезней, стрессов, неправильного образа жизни. В результате опухолевые клетки становятся «особенными» в организме, они игнорируют «антиростовые» стимулы, сигналы запуска клеточной гибели и т.п. Особенности опухолевых клеток можно соотнести с поведением психопата-эгоиста, эти клетки мало того, что не выполняют надлежащих им функций, так еще и бесконтрольно делятся и распространяются по всему организму, в сумасшедших количествах потребляют питательные вещества, которые потом тратят на создание таких же «психопатов» (рис. 2) . Следовательно, нарушается метаболизм и функционирование тканей организма, что чаще всего приводит к плачевным последствиям.

Рисунок 2. Что умеют раковые клетки.

Почему же так трудно лечить рак?

Заранее стоит заметить, что под понятием «рак» скрывается целая совокупность огромного количества типов злокачественных опухолей. Некоторые из них настолько сильно различаются, что найти что-то общее у них крайне трудно. Более того, не все типы опухолевых заболеваний корректно называть раковыми: рак - лишь частный случай онкологии , изучающей как злокачественные, так и доброкачественные опухоли. Именно поэтому, скорее всего, мы не увидим на полках аптек универсального лекарства от рака. Вследствие такого разнообразия онкологических заболеваний каждый пациент нуждается в персональном подходе к лечению. Но даже это персональное лечение в нынешней практике часто не эффективно. Самыми распространенными методами являются химиотерапия, хирургический метод (когда это возможно) и лучевая терапия. Но, к сожалению, эти методы тоже не всегда результативны и зачастую несут с собой колоссальные побочные эффекты, иногда не совместимые с жизнью.

Опухолевые клетки похожи на здоровые, как братья. При этом, вырастая, один брат становится добросовестным тружеником, а другой - злодеем-тунеядцем. И вследствие их большой схожести очень трудно направить терапевтический эффект именно на опухолевые клетки. Поэтому традиционная терапия обладает очень низкой направленностью, то есть она действует и на добросовестные, и на злокачественные клетки примерно в равной степени.

В настоящий момент множество групп ученых работает над повышением эффективности традиционных методов лечения опухолевых заболеваний. Все же существенно повысить выживаемость онкобольных, применяя только стандартную терапию, становится уже практически нереальным, особенно на последних стадиях, а своевременная диагностика зачастую невозможна из-за позднего обращения пациентов за помощью. Так или иначе, рано вешать нос.

Иммунотерапия

Достижения в иммунологии за последние несколько десятков лет привели к созданию совершенно новых подходов к лечению онкологических заболеваний. Результаты исследований уже дали право на существование многим иммунологическим методам . Ведь хорошая же идея - заставить сам организм бороться с опухолью! Иммунотерапия заключается в воздействии на иммунную систему для повышения эффективности ее противостояния раковым клеткам . Для этого в кровь пациента вводят вещества, в той или иной степени представляющие собой опухолевые антигены (молекулы, которые организм рассматривает как чужеродные и опасные и запускает против них иммунный ответ), способствующие размножению специальных иммунных клеток-убийц, которые будут препятствовать развитию опухоли и разрушать ее.

Важным преимуществом иммунотерапии является то, что, в силу своей специфической направленности, она почти не повреждает здоровые ткани. Данный метод более эффективен для лечения последних стадий онкологических заболеваний по сравнению с традиционными подходами. Кроме того, иммунотерапию можно использовать для снижения побочных эффектов лучевой терапии и химиотерапии.

Однако все не так радужно, как могло показаться. Иммунотерапия была крайне неэффективна при лечении некоторых типов опухолевых заболеваний, например предстательной железы . Проблема, опять же, заключалась в недостаточной направленности препаратов.

Но я, мечту свою лелея, решил проблему гениально...

Благодаря интенсивным исследованиям в области иммунологии открыто множество факторов, влияющих на осуществление иммунного ответа . Стало ясно, что одну из ключевых ролей в спектакле «Иммунный ответ» играют особые отростчатые клетки - дендритные (ДК ). Открыл их в 1868 году немецкий ученый Пауль Лангерганс , который ошибочно принял эти клетки за нервные окончания с подобными отростками. ДК вновь описал в 1973 году Ральф Стайнман , он же установил их принадлежность к иммунной системе . Лишь через 38 лет он был посмертно удостоен Нобелевской премии за проделанную работу.

В последние десятилетия развивалась тенденция по внедрению дендритных клеток в качестве вспомогательных средств для лечения различных типов рака. По мнению ученых, их систематическое применение в иммунотерапии позволит добиться от нее максимального эффекта.

Дендритные клетки - популяция особых клеток, функция которых заключается в презентации «вражеских» антигенов другим клеткам иммунной системы. Таким способом они активируют адаптивный иммунитет . По научному, такие клетки-посредники называются антигенпрезентирующими (АПК ). Свое название ДК получили благодаря разветвленным отросткам мембраны, напоминающим дендриты нервных клеток, которые вырастают у них на определенных этапах развития. ДК располагаются, в основном, в крови и тканях, которые соприкасаются с внешней средой. Эти клетки обладают специальными механизмами распознания «врагов». В периферических тканях ДК захватывают антигены через несколько дополнительных механизмов . Проще говоря, они способны к поглощению инородцев, то есть фагоцитозу и пиноцитозу антигенов, выпячивая клеточную мембрану и захватывая вражескую частицу.

После «трапезы» с током крови или по лимфатическим сосудам они перемещаются в лимфатические узлы . Между тем, в ДК происходит преобразование (процессинг) белковых антигенов и расщепление их на кусочки-пептиды, которые в конечном итоге связываются с молекулами главного комплекса гистосовместимости (major histocompatibility complex , MHC ), расположенными на поверхности ДК . После этого ДК достигает полной зрелости и при помощи молекул MHC презентует вражеский антиген другим клеткам иммунной системы.

В качестве этих «других клеток» выступают «армейские новобранцы», еще не обученные Т-клетки, ранее не сталкивавшиеся с противником-антигеном. После столкновения Т-клетки начинают активно делиться и дифференцироваться в войска спецназа, или антиген-специфические эффекторные Т-клетки . Особые подразделения спецназа - CD4+ T-клетки - становятся незаменимыми помощниками или T-хелперами (рис. 3). Они стимулируют солдат химических войск - В-лимфоцитов , которые производят антитела . Это специальные белковые молекулы, которые, как противоядия, идут на борьбу с конкретными чужеродными частицами . Такая химическая защита или иммунный ответ с участием антител относится к гуморальному иммунитету .

Рисунок 3. Иммунная армия.

Кроме того, необученные T-клетки и Т-хелперы посредством выделения активирующего вещества интерлейкина-2 (IL-2 ), привлекают на помощь снайперов Т-киллеров , которые в дальнейшем уничтожают зараженные клетки, ведя обстрел ядовитыми цитотоксинами. Таким образом работает клеточный иммунитет.

Некоторая часть «обученных» Т-клеток становится клетками памяти, они живут в организме годами. Всякий раз, когда они встречают старого знакомого врага, то очень быстро запускают иммунный ответ.

Тип иммунного ответа отчасти определяется тем, какие ДК презентуют антиген и выделение каких веществ они стимулируют . Таким образом, правильно подобрав и обработав ДК, можно добиться развития интересующих нас иммунных ответов, например таких, против которых не смогут устоять даже опухолевые клетки.

Дендритные клетки в иммунотерапии

Поскольку опухолевые клетки великолепно владеют искусством маскировки, иммунной системе очень сложно распознать антигены на их поверхности. Встает вопрос о том, как можно создать действительно мощный иммунный ответ, направленный на их уничтожение.

На мышиных моделях показано, что ДК могут захватывать антигены, которые высвобождаются из опухолевых клеток, и представлять их Т-клеткам в лимфоузлах. Это приводит к активации опухолеспецифических Т-клеток и последующему отторжению опухоли , . По сравнению с другими АПК, такими как макрофаги, дендритные клетки чрезвычайно эффективны при представлении антигена, тем самым объясняя свое прозвище «профессиональных АПК». Это говорит о том, что ДК можно использовать для терапевтических вмешательств при онкопатологии.

В настоящее время развивают две темы исследований: как опухолевые клетки изменяют физиологию ДК, и как мы можем опираться на мощные свойства ДК при создании новых методов иммунотерапии рака.

Опухолевые клетки так просто не сдаются!

Дендритные клетки обнаруживают в большинстве опухолей. ДК отбирают образцы опухолевых антигенов путем захвата умирающих клеток или буквальным откусыванием частей живых . В свою очередь опухоли могут препятствовать представлению и созданию иммунных реакций с помощью различных механизмов. В пример можно привести такие антигены опухолей, как раково-эмбриональный антиген (РЭА ) и муцин-1 , которые, попав в ДК, могут быть ограничены ранними эндосомами, то есть плазматической мембраной, что предотвращает эффективную обработку и презентацию антигена Т-клеткам .

Также опухоли могут мешать созреванию ДК. Во-первых, они могут блокировать, то есть ингибировать, созревание ДК путем выделения особого белка IL-10, который приводит к полному отсутствию реакции (антиген-специфической анергии) , . Во-вторых, факторы, выделяемые опухолью, могут изменять созревание ДК, вызывая образование клеток-предателей, которые косвенно способствуют росту этой опухоли («проопухолевые» дендритные клетки) . Поэтому понимание функций ДК в онкологических процессах представляет собой обширную область для исследований. В конечном счете, «перевоспитание» проопухолевых ДК в противоопухолевые может вести к зарождению нового подхода в иммунотерапии.

Вакцина на основе дендритных клеток

Целью вакцинологов является выявление опухолеспецифических иммунных ответов, которые будут достаточно устойчивыми для осуществления долговременной борьбы против опухоли и ее искоренения. Требуется определить протоколы вакцинации, отвечающие на вопросы: «что?», «как часто?» и «в каком количестве?» необходимо вводить в организм пациента для генерации сильных ответов Т-клеток. В идеальном случае после вакцинации Т-клетки должны эффективно распознавать сигналы-антигены на опухолевых клетках и способствовать их гибели путем выделения ядов-цитотоксинов.

ДК могут быть получены из кровяных клеток-предков (моноцитов) пациента, которые загружают антигенами ex vivo , то есть знакомят с врагом вне организма в стерильных лабораторных условиях. Затем эти моноциты надлежащим образом созревают и вводятся обратно пациенту при вакцинации. Теоретически это должно давать целый набор дендритных клеток, запускающих иммунные войны.

В последнее десятилетие значительные экспериментальные и клинические ресурсы были отданы на разработку противораковых вакцин на основе ДК , . Это привело к созданию многочисленных типов вакцин, которые различаются протоколами загрузки ДК антигенами или биохимическим манипулированием клетками. Например, один из типов вакцин подразумевает введение антигенов опухоли и их прямую доставку в ДК непосредственно в организме пациента.

Еще одна стратегия вакцинации, которая совсем недавно начала привлекать внимание, связана с естественными подмножествами дендритных клеток, которые могут быть выделены с помощью высокоэффективных магнитных гранул, покрытых антителами , . Накопленные клинические данные говорят о том, что такие вакцины достигают многообещающей эффективности у пациентов с меланомой - долгосрочной выживаемости без прогрессирования (1–3 года) у 28% пациентов . Те или иные разновидности вакцин применяют в зависимости от типа опухолевого заболевания и его стадии.

В целом эффективность вакцинации на основе ДК зависит от множества различных факторов, включая характер и источники антигенов, иммунологический статус пациента, тип вовлеченных рецепторов на ДК и подмножества специфических ДК, на которые осуществляется воздействие .

Важно отметить факт, что на май 2017 года только одна клеточная терапия с участием ДК лицензирована для лечения людей, а именно Sipulteucel-T (Provenge, США). C 2010 года Sipulteucel-T одобрен для лечения бессимптомного и минимально-симптоматического метастатического рака, а также рака предстательной железы .

Безопасность - наше все!

Безопасность противоопухолевых вакцин на основе ДК подтверждена и хорошо документирована во многих клинических исследованиях . Местные реакции в виде зуда, сыпи или боли обычно мягкие и самоограничивающиеся. Они характерны и для других лечебных процедур. Случаются и системные побочные эффекты, связанные с заболеванием гриппом или другими инфекциями вследствие переброса защитных сил на опухолевый фронт.

Одной из особых проблем иммунотерапии является возможность развития аутоиммунитета . Это состояние, при котором иммунная система принимает собственные здоровые клетки организма за чужеродные и атакует их . Однако стратегии противоопухолевой вакцинации дендритными клетками редко ассоциируются с тяжелой иммунной токсичностью. Ожидается, что иммунотерапия на основе ДК сохранит качество жизни пациентов с онкозаболеваниями на более высоком уровне.

Качество жизни является важным показателем при оценке новых противоопухолевых средств. Например, в работе Николая Леонарцбергера у всех 55 пациентов с таким типом рака, как карцинома почек, при иммунотерапии на основе ДК не было выявлено отрицательного влияния на качество жизни. Это выгодно отличается от других существующих методов лечения, вызывающих существенное токсическое действие .

Вместе с тем, отчетов о результатах изменения качества жизни пациентов после дендритной клеточной иммунотерапии недостаточно, что требует дальнейших исследований.

Перспективы

Разработка вакцин на основе дендритных клеток - весьма «горячая тема». Большинство исследователей используют ДК, подверженные воздействию опухолевой РНК, лизатов и антигенов опухолевых клеток. При этом многие научные работы проверяют введение вакцин на основе ДК в сочетании со стандартной химиотерапией или лучевой терапией . В некоторых испытаниях тестируют комбинации вакцин и противовоспалительных препаратов.

По официальным данным базы ClinicalTrials.gov на февраль 2017 было зарегистрировано не менее 72 клинических испытаний, начатых после 1 сентября 2014 года и оценивающих противоопухолевые вакцины с ДК .

Это позволяет надеяться на скорейшее внедрение новых эффективных методик иммунотерапии онкозаболеваний, которые позволят успешно бороться с различными типами рака.

Заключение

Ученые все чаще приходят к выводу о том, что иммунотерапия на основе дендритных клеток является достойным, безопасным и хорошо переносимым иммунотерапевтическим методом, который может вызывать иммунные реакции даже у пациентов с раком последней стадии. В последнее время разработано множество стратегий использования противоопухолевой активности ДК. Существует реальная необходимость в клинических исследованиях, демонстрирующих, что вакцины на основе дендритных клеток могут вызывать долговременные объективные ответы и улучшать долгосрочную выживаемость пациентов.

Общее развитие вакцин с ДК постоянно сталкивается со множеством препятствий. Помимо проблем с эффективностью вакцин, разработка терапии для клинического применения является финансово затратной, требует хорошо оснащенных современных лабораторий и наличия высококвалифицированных научных кадров, что позволило бы проводить многоцентровые клинические испытания последних фаз с участием большого количества пациентов.

В заключение хочется сказать, что иммунотерапия весьма перспективна и требует дальнейшего раскрытия своего потенциала. Речь идет не только о вакцинах на основе ДК, но и о многочисленных специфичных антителах и т.п. Онкология не обойдется без комбинирования различных методов терапии, традиционных и инновационных. С другой стороны, встает вопрос о доступности этих инновационных методик конкретно на местах лечения онкобольных.

В России сегодня иммунотерапия слабо развита, она не преобладает над стратегиями лучевой терапии и химиотерапии. В то же время в США и Израиле иммунотерапия развивается быстрее и уже активно используется в онкоцентрах как в качестве профилактических вакцин, так и для продления жизни тяжелобольных пациентов . Иммунотерапия на основе дендритных клеток только начинает свою историю, в которую еще предстоит вписать лучшие страницы.

Литература

  1. Метастазирование опухолей ;
  2. Попович А.М. Иммунотерапия в онкологии // Справочник по иммунотерапии для практического врача. СПб: «Диалог», 2002. С. 335–352;
  3. Иммуностимулирующие вакцины ;
  4. Giuseppe Di Lorenzo, Carlo Buonerba, Philip W. Kantoff. (2011). Immunotherapy for the treatment of prostate cancer . Nat Rev Clin Oncol . 8 , 551-561;
  5. Иммунитет: борьба с чужими и… своими ;
  6. R. M. Steinman. (1973). IDENTIFICATION OF A NOVEL CELL TYPE IN PERIPHERAL LYMPHOID ORGANS OF MICE: I. MORPHOLOGY, QUANTITATION, TISSUE DISTRIBUTION . Journal of Experimental Medicine . 137 , 1142-1162;
  7. E. Sergio Trombetta, Ira Mellman. (2005). CELL BIOLOGY OF ANTIGEN PROCESSING IN VITRO AND IN VIVO . Annu. Rev. Immunol. . 23 , 975-1028;
  8. Пожаров И. (2012). Дендритные клетки . «МЕД-инфо» ;
  9. Kang Liu, Michel C. Nussenzweig. (2010). Origin and development of dendritic cells . Immunological Reviews . 234 , 45-54;
  10. Facundo D. Batista, Naomi E. Harwood. (2009). . Nat Rev Immunol . 9 , 15-27;
  11. Jacques Banchereau, Ralph M. Steinman. (1998). Dendritic cells and the control of immunity . Nature . 392 , 245-252;
  12. Mark S. Diamond, Michelle Kinder, Hirokazu Matsushita, Mona Mashayekhi, Gavin P. Dunn, et. al.. (2011). Type I interferon is selectively required by dendritic cells for immune rejection of tumors . J Exp Med . 208 , 1989-2003;
  13. Mercedes B. Fuertes, Aalok K. Kacha, Justin Kline, Seng-Ryong Woo, David M. Kranz, et. al.. (2011). Host type I IFN signals are required for antitumor CD8+T cell responses through CD8α+dendritic cells . J Exp Med . 208 , 2005-2016;
  14. M V Dhodapkar, K M Dhodapkar, A K Palucka. (2008). Interactions of tumor cells with dendritic cells: balancing immunity and tolerance . Cell Death Differ . 15 , 39-50;
  15. E. M. Hiltbold, A. M. Vlad, P. Ciborowski, S. C. Watkins, O. J. Finn. (2000). The Mechanism of Unresponsiveness to Circulating Tumor Antigen MUC1 Is a Block in Intracellular Sorting and Processing by Dendritic Cells . The Journal of Immunology . 165 , 3730-3741;
  16. Fiorentino D.F., Zlotnik A., Vieira P., Mosmann T.R., Howard M., Moore K.W., O"Garra A. (1991). IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells . J. Immunol. 146 , 3444–3451;
  17. Steinbrink K., Wölfl M., Jonuleit H., Knop J., Enk A.H. (1997). Induction of tolerance by IL-10-treated dendritic cells . J. Immunol. 159 , 4772–4780;
  18. Caroline Aspord, Alexander Pedroza-Gonzalez, Mike Gallegos, Sasha Tindle, Elizabeth C. Burton, et. al.. (2007). Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+T cells that facilitate tumor development . J Exp Med . 204 , 1037-1047;
  19. Rachel L Sabado, Sreekumar Balan, Nina Bhardwaj. (2017). Dendritic cell-based immunotherapy . Cell Res . 27 , 74-95;
  20. K. F. Bol, G. Schreibelt, W. R. Gerritsen, I. J. M. de Vries, C. G. Figdor. (2016). Dendritic Cell-Based Immunotherapy: State of the Art and Beyond . Clinical Cancer Research . 22 , 1897-1906;
  21. J. Tel, E. H. J. G. Aarntzen, T. Baba, G. Schreibelt, B. M. Schulte, et. al.. (2013). Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients . Cancer Research . 73 , 1063-1075;
  22. G. Schreibelt, K. F. Bol, H. Westdorp, F. Wimmers, E. H. J. G. Aarntzen, et. al.. (2016). Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells . Clinical Cancer Research . 22 , 2155-2166;
  23. D. Duluc, H. Joo, L. Ni, W. Yin, K. Upchurch, et. al.. (2014). Induction and Activation of Human Th17 by Targeting Antigens to Dendritic Cells via Dectin-1 . The Journal of Immunology . 192 , 5776-5788;
  24. Dapeng Li, Gabrielle Romain, Anne-Laure Flamar, Dorothée Duluc, Melissa Dullaers, et. al.. (2012). Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10–producing suppressive CD4+T cells . J Exp Med . 209 , 109-121;
  25. Chun I. Yu, Christian Becker, Yuanyuan Wang, Florentina Marches, Julie Helft, et. al.. (2013). Human CD1c+ Dendritic Cells Drive the Differentiation of CD103+ CD8+ Mucosal Effector T Cells via the Cytokine TGF-β . Immunity . 38 , 818-830;
  26. F. Sandoval, M. Terme, M. Nizard, C. Badoual, M.-F. Bureau, et. al.. (2013). Mucosal Imprinting of Vaccine-Induced CD8+ T Cells Is Crucial to Inhibit the Growth of Mucosal Tumors . Science Translational Medicine . 5 , 172ra20-172ra20;
  27. Laurence Zitvogel, Maha Ayyoub, Bertrand Routy, Guido Kroemer. (2016). Microbiome and Anticancer Immunosurveillance . Cell . 165 , 276-287;
  28. Philip W. Kantoff, Celestia S. Higano, Neal D. Shore, E. Roy Berger, Eric J. Small, et. al.. (2010). Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer . N Engl J Med . 363 , 411-422;
  29. Celestia S. Higano, Eric J. Small, Paul Schellhammer, Uma Yasothan, Steven Gubernick, et. al.. (2010). Sipuleucel-T . Nat Rev Drug Discov . 9 , 513-514;
  30. M. A. Cheever, C. S. Higano. (2011). PROVENGE (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic Cancer Vaccine . Clinical Cancer Research . 17 , 3520-3526;
  31. Laura Rosa Brunet, Thorsten Hagemann, Andrew Gaya, Satvinder Mudan, Aurelien Marabelle. (2016). Have lessons from past failures brought us closer to the success of immunotherapy in metastatic pancreatic cancer? . OncoImmunology . 5 , e1112942;
  32. Andreas Draube, Nela Klein-González, Stefanie Mattheus, Corinne Brillant, Martin Hellmich, et. al.. (2011). Dendritic Cell Based Tumor Vaccination in Prostate and Renal Cell Cancer: A Systematic Review and Meta-Analysis . PLoS ONE . 6 , e18801;
  33. S. M. Amos, C. P. M. Duong, J. A. Westwood, D. S. Ritchie, R. P. Junghans, et. al.. (2011). Autoimmunity associated with immunotherapy of cancer . Blood . 118 , 499-509;
  34. Nicolai Leonhartsberger, Reinhold Ramoner, Claudia Falkensammer, Andrea Rahm, Hubert Gander, et. al.. (2012). Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma . Cancer Immunol Immunother . 61 , 1407-1413;
  35. Guido Kroemer, Lorenzo Galluzzi, Oliver Kepp, Laurence Zitvogel. (2013). Immunogenic Cell Death in Cancer Therapy . Annu. Rev. Immunol. . 31 , 51-72;
  36. Abhishek D. Garg, Monica Vara Perez, Marco Schaaf, Patrizia Agostinis, Laurence Zitvogel, et. al.. (2017). Trial watch: Dendritic cell-based anticancer immunotherapy . OncoImmunology . e1328341;
  37. Иммунотерапия: революция в лечении рака . «Герцлия Медикал Центр» .

Иммунная система – это система защиты организма не только от вредоносных микроорганизмов (бактерии, простейшие, грибы и вирусы), но и от собственных вырождающихся клеток , которые бесконтрольно делятся.

Каждый день жизни в человеческом организме зарождается около 8 злокачественных опухолей ! И при этом средняя частота развития опухолевой болезни - 1 раз в 200 лет (клеточных делений)! Это отражает работу иммунной системы человека по распознанию и уничтожению измененных клеток организма, из которых в последствие может развиваться рак .

И все-таки иногда иммунная система не распознает такие клетки. В свою очередь, опухоль во время своего роста продуцирует вещества, угнетающие иммунную систему. Как следствие у большинства людей, страдающих раковой болезнью, иммунная система ослаблена . Это служит причиной назначения врачами комплексного медикаментозного лечения (витамины, микроэлементы и т.д.) для стимуляции иммунной системы .

В последнее время благодаря интенсивным исследованиям в области иммунологии открыты новые факторы и типы клеток , посредством которых реализуется иммунный ответ. Количество этих исследований постоянно растет, и сегодня мы понимаем иммунные процессы намного, чем 10 лет тому глубже назад. И совершенно ясно, что дендритные клетки в этих процессах играют особо важную роль.

Ученые подошли вплотную выращивать дендритные клетки осуществляющие патрулирование и обнаружение чужеродных структур в тканях организма. Дендритная клетка выступает посредником для других иммунных клеток, которые непосредственно выполняют функцию иммунной защиты– обнаруживают и уничтожают чужеродную клетку или возбудителя.

Эти структуры захватываются дендритными клетками, разлагаются на более мелкие, которые потом «выносятся на показ» на поверхность клетки. В таком виде дендритные клетки мигрируют из тканей в лимфоузлы. Там чужеродные структуры будут представлены клеткам-исполнителям (цитотоксическим Т-лимфоцитам), которые таким образом активируются, покидают лимфоузлы, выходят в ткани, атакуют и уничтожают структуры, обладающие представленным им признаком.

В дальнейшем дендритные клетки могут также активировать другие иммунные клетки – так называемые Т-хелперы . Активные Т-хелперы с током крови попадают на «место событий», и там вырабатывают вещества, поддерживающие активность клеток-исполнителей.

В результате взаимодействия дендритных клеток и Т- хелперов также стимулируются к росту и выработке специфических антител антителпродуцирующие В-клетки.

С помощью специальных методов из крови больного выделяются клетки-предшественники, из которых впоследствии выращивают дендритные клетки. В присутствие определенных веществ их высаживают на лабораторные чашки, чтобы клетки не утратили способности к дальнейшему развитию. Во время фазы созревания в культуру клеток добавляют структуры опухолевых клеток, полученные путем генной инженерии, либо «обломки» опухоли самого пациента. Незрелая клетка-предшественник способна захватывать эти структуры. Захваченный «обломок» претерпевает определенные структурные изменения, чтобы позднее характерный признак этой опухоли мог быть лучше распознан другими иммунными клетками.

В результате этих процессов клетка- предшественник превращается в дендритную клетку, которая на своей поверхности несет признак опухоли с особой сигнальной последовательностью. Именно эту последовательность и распознает иммунная клетка как чужеродную.

Теперь созревшие дендритные клетки вводятся под кожу, откуда они активно перемещаются в лимфоузлы , активируют различные типы клеток – исполнителей (цитотоксические Т-лимфоциты), которые при контакте с опухолевой клеткой уничтожают ее. Активные клетки-исполнители «ознакомлены» с чужеродным признаком, с током крови они распространяются по всему организму и «ищут» в разных тканях носителей именно этого признака.

При встрече со своей целью (в данном случае с опухолевой клеткой), клетка-исполнитель повреждает ее и вырабатывает вещества, оповещающие другие иммунные клетки.

Эффективность лечения
дендритными клетками

На сегодняшний день доказана эффективность лечения дендритными клетками больных раком кожи, почки, молочной железы, предстательной железы, а также раком толстой кишки и яичника.

Для большинства видов рака уже существуют стандарты лечения, которые создавались десятилетиями. Иммунотерапия (вакцинация дендритными клетками) сегодня рекомендуется как поддерживающая, в комплексе с химиотерапией и лучевой терапией. Известно, что иммунные клетки более эффективно борются с клетками опухоли, которая ранее уже подверглась разрушительному действию «химии или радиации».

Вакцинация дендритными клетками также часто применяется, когда рутинная терапия не приносит желаемого эффекта. Примером для этого может служить лечение рака почки и меланомы кожи.

Наибольший эффект при вакцинации проявляется на ранних стадиях болезни, когда в организме еще не так много раковых клеток. В этой ситуации иммунные клетки зачастую намного эффективнее чем у больных с большей опухолевой массой. Поэтому перед лечением дендритными клетками всегда показано специальное лабораторное исследование крови, позволяющее определить реактивность иммунной системы. Как при стандартном лечении рака, так и при лечении дендритными клетками, терапия будет тем эффективнее, чем раньше она начнется.

Дебреценские исследователи изучают свойства дендритных клеток, которые являются определенным типом клеток иммунной системы. С помощью перепрограммирования клеток открывается возможность эффективного лечения ряда заболеваний, в том числе злокачественных опухолей.

Так называемые дендритные клетки составляют лишь тысячную часть лейкоцитов, они получили свое название, из-за находящихся на них шипах: дендритах. Дендритные клетки, первыми встречают возбудителя, поражающего человеческий организм, и играют ключевую роль в запуске иммунного ответа. Они развиваются в красном костном мозгу, и оттуда распространяются по всем тканям, где осуществляется их патрулирование.

Множество клеток иммунной системы располагают антиген-представляющей способностью, но дендритные клетки, по сравнению с ними, выполняют эту функцию более эффективно. Поэтому, в последние годы на основе дендритных клеток разрабатываются противораковые вакцины.

При встрече с возбудителем или злокачественной раковой клеткой, дендритные клетки атакуют вторженцев и, выявив чужеродные молекулы (антигены) на вторженцах, детально обрабатывают и передают их другим иммунным клеткам, клеткам-т адаптивной иммунной системы, запуская этим следующие защитные процессы.

Благодаря успехам в исследовании дендритных клеток, в 2011 году в области медицины и физиологии была присуждена нобелевская премия. Премия была присуждена со временем скончавшемуся профессору из Канады, Ральфу Штейнману, который тесно сотрудничал с медико- научным центром здоровья Дебреценского Университета DE OEC, где его научные открытия обширно используются. Ведутся фундаментальные исследования для лучшего познания биологии дендритных клеток в институте иммунологии, а также биохимии и молекулярной биологии DE OEC во главе с др. Евой Райнавельди и др. Ласло Надь.
В клиническом центре клеточной терапии, действующем на базе университета, применяются методы лечения у больных с опухолями с целью пробуждения противоопухолевого иммунного ответа, разработанные профессором Штейнманом.

Ласло Надь, заведующий Центром Генетики и его коллеги исследуют белки, регулирующие транскрипцию генов. В центре первоначального исследования такие белки, которые под влиянием жиров могут запустить и остановить гены. Учёные изучали тот фактор, каким образом влияет так называемая транскрипция на функционирование дендритных клеток.

Согласно исследованиям в генетике, широко используемым методом mikroarray (чип нуклеиновой кислоты) учёными были выявлены те белки, кодируемые РНК, которые входят в состав дендритных клеток. Оказалось, что уровень одного из белков значительно возрастает в процессе созревания (дифференциации). Пришли к выводу, что этот белок может обладать какой-то функцией, поэтому исследователи изучили те гены, которые запускает или останавливает этот белок. Таким образом, получили новую информацию о маршруте, который контролирует этот белок. В результате исследований др. Надь и его коллеги обнаружили специфический маршрут, по которому осуществляется приём, обработка и представление липидов в иммунной системе.

Затем учёные систематически тестировали и другие составные семейства жирорастворимых соединений (ретиноевая кислота, витамин а, витамин d); изучали маршруты, которые эти вещества регулируют, и какова их связь с другими иммунными функциями. По словам др. Ласло Надь, до сих пор исследования о маршрутах проводились на дендритных клетках из человеческих моноцитов (группа лейкоцитов) in vitro (т.е. в лабораторных условиях). В настоящее время исследования идут по направлению in vivo, то есть, на живом организме (на мышах). На мышах можно моделировать и исследовать различные заболевания, например автоиммунные заболевания, воспаления и такие патологические изменения, которые связаны с человеческими заболеваниями.

В дальнейшем др. Надь заметил, что исследования имеют значение в том, что эти клетки можно использовать в так называемых противоопухолевых вакцинациях. Можно развести такие клеточные культуры, в которых опухолевые клетки, изъятые с человека, вскармливают дендритными клетками. впоследствии эти клетки, возвращаясь в организм, могут вызвать сильный иммунный ответ против опухолевых клеток.

«Наши исследования проводятся с целью, чтобы с небольшими жирорастворимыми молекулами – как например рецепторы эстрогенов или витамин d – повлиять на процесс транскрипции генов, то есть на регуляторные факторы генов, и таким образом может осуществляться перепрограммирование клеток. Мы сами можем преобразовывать иммунофенотипы, то есть иммунные свойства»– говорит др. Надь. Эти перепрограммированные клетки можно впоследствии потом применить в области опухолевой вакцинации.

Значение перепрограммирования клеток заключается в том, что они более эффективно могут реагировать на отдельные виды опухолей, или же можно создать «индивидуальные» дендритные клетки для различных типов опухолей.

Для выделения предшественников дендритных клеток у пациента берут 150 мл крови. Чтобы кровь не сворачивалась, в нее добавляют противосвертывающее средство – Гепарин. Эту кровь в охлажденном виде немедленно доставляют в нашу лабораторию для последующей обработки.

В специальных сосудах кровь центрифугируется и разделяется на фракции. Целью фракционирования является отделение белых кровяных клеток от красных кровяных клеток и клеток неспецифического иммунного ответа – гранулоцитов.

Фракция красных кровяных клеток и гранулоцитов осаждается на дно пробирки и в дальнейшем не используется. Во фракции лимфоцитов находятся те клетки, из которых в последствие могут развиться дендритные клетки.

После нескольких ступеней помещаются в специальные чашки с питательным раствором. Здесь клетки, в том числе и клетки-предшественники, постепенно оседают на дно пластиковой чашки и фиксируются там. И после завершающей фазы очистки в питательный раствор добавляются факторы роста.

Затем клетки помещаются в специальный инкубационный шкаф, в котором поддерживается постоянная температура, а также обеспечиваются и контролируются необходимые условия среды для роста и созревания культуры клеток. Здесь проходит фаза роста.

Для запуска процесса созревания в культуру клеток необходимо добавить белковые субстанции, которые находились на поверхности опухолевых клеток этого пациента. Опухолевые клетки предоставляет патолог. Клетки берутся из хирургически удаленной опухоли или из материала биопсии. Этой белковой субстанцией может также выступать и т.н. опухолевый маркер, который ранее определялся в крови пациента в повышенной концентрации.

В общей сложности В общей сложности дендритные клетки выращиваются в условиях инкубационного шкафа 7 дней. Зрелость дендритных клеток можно определить методом микроскопии – форма у всех клеток разная, неправильная. Обращают на себя внимание множественные тонкие волосоподобные выросты, окаймляющие клетку.

Перед тем, как «собирать урожай» клетки проходят еще один тест на зрелость в так называемом проточном цитометре. В нем определяется наличие специфических структур, их количество и взаимоотношение на поверхности дендритных клеток.

После проверки зрелости, культура дендритных клеток собирается и снова подвергается многократной тщательной очистке. Потом половина клеток собирается для первой инъекции в маленький шприц, который передается лечащему врачу. Врач вводит вакцину пациенту в подкожную клетчатку живота в область паховых лимфоузлов и, через 15 минут пациент может покинуть клинику.

Вторая часть клеток собирается для последующей инъекции и хранится в специальном растворе при температуре -196°С. Эти клетки будут разморожены непосредственно перед второй инъекцией и, подобно первой, набраны в шприц и переданы лечащему врачу.

Когда проводится вторая инъекция?

После первой инъекции необходимо регулярно проходить исследования крови, чтобы следить за реакцией иммунной системы. Концентрация иммунных клеток, уничтожающих опухоль значительно повышается. Снижение этой концентрации является показанием для второй инъекции.

Какие побочные явления могут
возникать в процессе лечения?

При лечении дендритными клетками могут наблюдаться определенные побочные эффекты. Они могут возникать как следствие общего иммунного ответа организма, что приведет к высвобождению веществ, участвующих в инфекционных воспалительных реакциях. Субъективно это может проявиться умеренным повышением температуры тела и слабостью. Реакция на инъекцию может также выражаться увеличением лимфоузлов. Иногда наблюдается покраснение кожи на месте инъекции.

Терапия дендритными клетками –
это гуманное лечение

В отличие от химио- или радиотерапии, когда организм подвергается воздействию чужеродных веществ или облучения, при лечении дендритными клетками с опухолью борется собственная иммунная система организма. В сравнении с другими видами лечения, терапия дендритными клетками очень редко сопровождается побочными реакциями, которые слабо выражены и обладают кратковременным характером, что едва ли отражается на общем самочувствии и работоспособности пациента. Кроме того, эта терапия проводится амбулаторная и не требует пребывания в клинике.

Таким образом, терапия дендритными клетками может проводиться в дополнение рутинного лечения (химиотерапии), которое угнетает иммунную систему. И по этой причине должно быть разделено с последним во времени. Результаты последних обширных исследований свидетельствуют об эффективности данного метода, что дает возможность поставить его в один ряд с общепризнанными методами. Однако, не смотря на это, терапия дендритными клетками по-прежнему рассматривается как дополнение к уже существующим методам.

Заключение

Лечение дендритными клетками является молодым видом лечения. Однако, несмотря на это, уже достаточно широко известно в научных кругах благодаря своей эффективности в лечении рака. Некоторые немецкие страховые компании и больничные кассы уже покрывают расходы на это лечение как на необходимую поддерживающую терапию при раке.

Лечение рака дендритными клетками - одно из новых направлений в онкологии, которое уже хорошо зарекомендовало себя. Дендритные клетки представляют собой клетки иммунной системы, имеющие полигональную форму с множественными отростками.

Классическими направлениями в лечении рака считаются хирургия , химиотерапия и лучевая терапия . Однако в последние годы появляются все новые методики. Многие из них основаны на модуляции иммунного ответа организма. Иммунотерапевтические методы лечения рака часто демонстрируют хорошие результаты у пациентов с поздними стадиями онкопатологии, когда другие способы воздействия на опухоль уже не приносят значительного результата.

Одно из новых направлений в онкологии, которое уже хорошо зарекомендовало себя. Дендритные клетки представляют собой клетки иммунной системы, имеющие полигональную форму с множественными отростками. Основная их функция - это презентация антигенов Т-клеткам. Говоря простым языком, дендритные клетки указывают иммунной системе на цель, которую та должна атаковать.

Для лечения рака используются только собственные дендритные клетки пациента. Они в течение нескольких дней культивируются в лабораторных условиях для увеличения количества. Дендритные клетки стимулируют опухолевыми антигенами. Затем их вводят обратно в организм пациента.

Введенные дендритные клетки несут на своей поверхности антигены опухоли. Они «показывают» эти антигены Т-клетками. Те учатся распознавать рак. В результате опухоль больше не может скрываться от иммунной системы. Т-киллеры атакуют и уничтожают клетки злокачественного новообразования.

  • Высокая эффективность. При многих видах рака результаты лечения лучше, чем дает лучевая и химиотерапия.
  • Отсутствие выраженных побочных эффектов, таких как тошнота, рвота, выпадение волос, резкая слабость. Большинство пациентов хорошо переносят лечение.
  • Отсутствие необходимости в госпитализации. Процедура лечения проводится амбулаторно. Все что нужно - в определенные дни посещать врача для забора крови или очередной инъекции дендритных клеток. При этом пациент ведет привычный образ жизни.

Результаты лечения оценивают через 6-9 месяцев. Курсы терапии дендритными клетками можно проходить повторно. На начальном этапе лечения инъекции делают чаще, затем становятся все более редкими. Схема терапии определяется врачом индивидуально для каждого пациента.

Дендритные клетки имеют высокую эффективность при многих видах рака. Чаще всего эта методика лечения онкопатологии применяется при:

Реже лечение дендритными клетками используется при:

Узнать точнее, какие виды рака лечат при помощи дендритных клеток, и на какие результаты следует рассчитывать, вы можете в одном из центров, практикующих данную разновидность иммунотерапии.

Лечение дендритными клетками во многих случаях позволяет добиться хороших результатов даже у больных с запущенными формами рака, когда другие методы перестают работать. Метод лечения поможет продлить пациенту жизнь на несколько месяцев или даже на несколько лет.

Все виды медицинских программ бронируйте на

Booking Health - это международный интернет-портал, где можно изучить информацию о ведущих мировых клиниках и забронировать медицинскую программу в режиме онлайн. Благодаря продуманной структуре и доступному изложению информации, сайтом с легкостью пользуются тысячи людей без медицинского образования. На портале представлены программы по всем основным направлениям медицины. Прежде всего, это диагностические программы, или чек-ап. Также это полный спектр программ лечения, от консервативной терапии до специальных хирургических вмешательств. Программы реабилитации закрепляют результаты проведенного лечения или используются самостоятельно. Интернет-портал Booking Health дает возможность сравнить квалификацию специалистов, методики лечения и стоимость медицинской помощи в разных клиниках. Пациент выбирает наиболее подходящий для него вариант самостоятельно или после бесплатной консультации доктора Booking Health.

Практическое применение в самых разных областях отечественной медицины – от косметологии до кардиологии. Но если в одних случаях клеточные продукты используются пока в экспериментальном порядке или проходят стадию клинических исследований, то в других – уже имеют статус терапевтически эффективной и одобренной регуляторами методики. Наиболее яркий пример клинического внедрения – иммунотерапия злокачественных новообразований с помощью дендритно-клеточной вакцины, созданной 20 лет назад в Санкт-Петербурге учеными НИИ (сейчас – НМИЦ) онкологии им. Н.Н. Петрова. О том, в каких обстоятельствах рождалась и отрабатывалась уникальная методика, Vademecum рассказала один из ее авторов – руководитель Центра клеточных технологий и научного отдела онкоиммунологии НМИЦ Ирина Балдуева.

«В ЕВРОПЕ МЫ БЫЛИ ОДНИМИ ИЗ ПЕРВЫХ»

– В чем суть терапии с помощью дендритно‑клеточной вакцины?
– Если объяснять упрощенно, то мы берем у пациента образец опухоли, которая уже не отвечает на другие методы лечения, выделяем опухолевые клетки и клетки крови и в лабораторных условиях модифицируем их таким образом, чтобы иммунная система начинала их распознавать, а затем вводим полученную дендритную вакцину пациенту. Дендритные клетки умеют распознавать антигены опухолевых клеток (раково‑тестикулярные антигены) и помогают иммунной системе с ними справляться.

– Как давно вы занялись этой темой?

– После медицинского училища я поступила в мединститут и параллельно работала медсестрой в хирургическом отделении. Там я часто общалась с онкологическими больными, и каждый говорил о том, как ему хочется жить – хотя бы еще несколько лет. Мне уже тогда стало ясно, что та же, например, химиотерапия помогает далеко не всем, высока вероятность прогрессирования заболевания, и надо что‑то делать, искать то, что сможет помочь этим людям. Я стала эту тему исследовать, на втором курсе института поняла, что следует сосредоточиться на иммунной системе, которая отвечает за многие изменения в организме, в том числе за борьбу с инфекционными, аутоиммунными и онкологическими заболеваниями. Так я стала изучать иммунологию. После института по распределению Минздрава я попала в НИИ онкологии им. Н.Н. Петрова. Специальности иммунолога тогда, конечно, не существовало, поэтому я занялась наукой. Параллельно работала в 31‑й городской больнице, где позже возглавила лабораторию иммунологии – там пришлось работать с клетками костного мозга, используемыми сегодня при изготовлении дендритно‑клеточных вакцин. И когда в 1998 году мне предложили войти в научную группу в НИИ онкологии в качестве иммунолога, я не раздумывая согласилась.

– Почему иммунология стала интересна НИИ онкологии?

– По экспериментальным исследованиям на лабораторных животных стало понятно, что вакцина работает. Потом‑то мы выяснили, что применение вакцины у людей сопряжено с большим количеством реакций. Опухоль уклоняется от иммунного контроля, продуцирует супрессирующие факторы, меняет свой «портрет». Во время лечения новообразование изменяется, грубо говоря, прячется от иммунитета. Тем не менее перспективы всем были очевидны. А в НИИ как раз было очень близкое по смыслу направление – отделение биотерапии и трансплантации костного мозга, которое возглавлял Владимир Михайлович Моисенко. При этом отделении и появилась наша лаборатория, сначала совсем маленькая – над вакциной работали всего три человека.
– Как в непростые 90‑е финансировались эти разработки?

– Минздрав выделял средства на научную работу института, а так как направление было признано перспективным, его постоянно поддерживали. В развитие темы вкладывал собственные средства и сам НИИ.

«ВАКЦИНА РАССЧИТАНА НА ПАЦИЕНТОВ С ИСЧЕРПАННЫМИ ВОЗМОЖНОСТЯМИ»

– А за рубежом в то время иммунотерапию изучали, практиковали?

– Из научной литературы я знала, что дендритными клетками занимаются в Париже в Онкологическом институте Густава Русси, и курирует там это направление Лоранс Зитвогель. Мы ей написали, пригласили в Петербург. Она приехала, посмотрела, дала множество дельных советов. Потом я отправилась на стажировку в ее институт. Сама Зитвогель училась в Америке, где подобные лаборатории появились заметно раньше. Она рассказывала, как трудно было организовать ее лабораторию в Париже, притом что работала она на том этапе только с дендритными клетками подопытных мышей. Первые человеческие дендритные клетки в лаборатории Зитвогель получили к 2000 году, параллельно с нами. Так что можно сказать, что в Европе НИИ им. Н.Н. Петрова был в этой тематике одним из первых, а в 2003‑2004 годах это удалось сделать коллегам из РОНЦ им. Н.Н. Блохина.

– Какие практические результаты принесли ваши исследования на сегодняшний день?

– Мы разработали более 10 противоопухолевых клеточных продуктов, но в клиническую практику попали лишь два – вакцины на основе дендритных клеток, выделяемых из костного мозга и крови. На их применение мы в свое время получили специальное разрешение Росздравнадзора. Остальные восемь мы не можем продвигать, поскольку 180‑ФЗ [федеральный закон 180‑ФЗ от 23 июня 2016 года «О биомедицинских клеточных продуктах». – Vademecum] фактически еще не работает.

– То есть дендритно‑клеточная вакцина под действие 180‑ФЗ не подпадает?

– Нет. По идее, производство и применение таких вакцин должны регулироваться отдельным законом – о минимально манипулируемом клеточном продукте. Такого документа пока нет, и неизвестно, когда он появится. Дело в том, что 180‑ФЗ распространяется на клеточные линии, которые получаются в результате размножения в лаборатории, а у нас они скорее созревают в лабораторных условиях – мы их учим распознавать опухолевые антигены. Тот самый закон, которого пока нет, должен будет распространяться на все виды трансплантации костного мозга, не подпадающей под действие 180‑ФЗ. Получается, две наши дендритные вакцины – единственные легитимно используемые у нас в стране: на их применение есть разрешение Росздравнадзора, а 180‑ФЗ на них не распространяется. Все остальные существующие в отрасли продукты (включая другие наши разработки), подпадающие под действие 180‑ФЗ, пока не зарегистрированы и применяться не могут. Причем у некоторых коллег были подобные нашим разрешения Росздравнадзора на использование клеточных технологий – в косметологии, комбустиологии, но с появлением 180‑ФЗ, пусть толком и не работающего, их применение стало невозможным.

– Как ваши вакцины работают?

– С 1998 года мы пролечили более 700 человек. Основные профили и локализации – меланома, саркома мягких тканей, рак кишечника, молочной железы, почек. Все эти новообразования являются иммуногенными. Когда уже появляются метастазы, тогда этих иммуногенных антигенов становится все больше. Так что наша вакцина рассчитана на пациентов с исчерпанными возможностями. Удается продлить их жизнь как минимум на год.

– То есть полностью излечиться с помощью дендритно‑клеточной вакцины нельзя?

– У нас есть в практике такие случаи, например, при меланоме. Есть пациенты, которые продолжают лечение в течение 10 лет – болезнь отступила, но сохранился риск, что заболевание вернется и вернется в иной форме. Бывало, пациент полностью излечился от саркомы мягких тканей, а через четыре года у него появились метастазы в головном мозге. Клетки скрылись от иммунной системы, в какой‑то момент активизировались и спровоцировали рецидив, который оказался крайне агрессивным. Именно поэтому мы не только проводим иммунотерапию, но и в целом занимаемся иммунной системой пациента. Обычно иммунитет истощен, его надо восстанавливать, чтобы у клеток появились силы отвечать на наше лечение. Это не так просто, система может заработать через месяц, а может и через два‑три.

«ИММУНОТЕРАПИЮ МОЖНО БЫЛО БЫ ИСПОЛЬЗОВАТЬ КАК ВМП»

– Есть мнение, что методики, подобные вашей, следует использовать на более ранних стадиях онкозаболеваний, не подвергая пациента лучевой и химиотерапии. Что вы по этому поводу думаете?

– Я поддерживаю это мнение. В общем‑то поэтому сегодня и происходит бум иммуноонкологии, препаратов на основе моноклональных антител, провоцирующих разрушение опухоли. Однако не у всех пациентов это работает и не всегда. Если бы пациентам сразу после радикального вмешательства назначали иммунотерапию, то была бы возможность или полного излечения или восстановления иммунной системы на длительный период, предотвращающий возвращение заболевания. Или другой вариант. Пациента пролечили стандартными методами – операция, лучевая терапия, химиотерапия, если показана, гормонотерапия – в соответствии с мировым стандартом. А потом его отправляют не «отдыхать», как говорят химиотерапевты, а к онкоиммунологам.

В нашем центре прием ведут пять таких специалистов. К нам приходит пациент, и мы определяем, что ему необходимо – можно ли сейчас подключить ему иммунотерапию. То есть мы уже на том клиническом пути, о котором вы говорите.Что является препятствием? К сожалению, и консультации, и сама иммунотерапия осуществляются только на платной основе. Пока у государства нет возможности поддерживать это направление. Хотя иммунотерапию можно было бы использовать в качестве высокотехнологичной медицинской помощи. Мы подавали наши протоколы в Минздрав, но нам ответили: надо дождаться появления закона о минимально манипулируемых клеточных продуктах. При этом иммунотерапия нисколько не дороже некоторых онкопрепаратов.

– Каково, по вашим расчетам, соотношение стоимостей этих методик?

– Например, первая линия химиотерапии при саркоме мягких тканей недорогая. А вот совокупные затраты на вторую линию химиотерапии в целом по России достигают от 0,4 до 4,1 млрд рублей в год. Такая вилка связана с разницей в цене препаратов. Вакцину близко не сравнить по стоимости – это 43 тысячи рублей за одно введение. Как правило, пациенты лечатся в течение первого года ежемесячно, второго года – раз в три месяца, и третьего – раз в полгода. А дальше уже остается только наблюдение. Мы удешевили весь процесс до минимума, отработана каждая доза. У нас даже диссертационная работа на эту тему есть.

– За счет чего курс лечения можно удешевить? Более точно рассчитывать дозы?

– Опытным путем мы стали уменьшать дозу вакцины, смотреть, при каком ее минимальном объеме сохраняется активность клеток, какие нужны для этого внешние условия. Можно сэкономить на компонентах вакцины. Например, ростовой фактор – это отдельный препарат, который сегодня уже производится и в России. Питательных, культуральных сред, факторов дифференцировки недостаточно, если их будет больше, мы сможем еще снизить стоимость курса лечения. Среды, например, мы покупаем в Германии. Хорошо бы иметь отечественный аналог. Еще одна проблема – расходные материалы из пластика: мы используем импортные изделия, потому что у нас их выпуск не налажен.

– Как пациенты вас находят? Вы вкладываетесь в продвижение?

– Нет, здесь работает так называемое сарафанное радио. Пациенты и их родственники очень много общаются друг с другом, много читают, ищут варианты. Очень многие уезжают на такое лечение за рубеж, например, в Израиль, а когда у них кончаются деньги, им говорят, что то же самое можно сделать в Санкт‑Петербурге.

– Куда, помимо Израиля, уезжают лечиться российские пациенты?

– Германия, Канада, США, Япония. Везде это очень дорого. И наша задача в том, чтобы это направление у нас не свернулось из‑за банального отсутствия госфинансирования, работающих законов и так далее.

«ВАЖНО, ЧТОБЫ НАС НЕ ОТБРОСИЛИ СНОВА НА ЭКСПЕРИМЕНТАЛЬНУЮ СТАДИЮ»

– Недавно о планах заняться клеточными технологиями объявили сразу две российские фармкомпании – «Биокад» и «Р‑Фарм», которые планируют производить CAR‑T‑препараты. Чем эта технология отличается от вашей?

– Мы сейчас создаем собственную научную группу, которая займется разработкой CAR‑T‑терапии. Этот метод ориентирован на другие виды рака – например, на лейкозы, лимфомы. Для этих нозологий CAR‑T подходит, по предварительным данным, даже больше, чем трансплантация костного мозга с химиотерапией. Суть в том, что у опухолевых клеток есть одинаковые гены, значит можно создать антиген, CAR‑T, который их разрушит. Это доказано в эксперименте,но в клинике совсем не изучено. Проблема еще вот в чем. Когда опухоль увеличивается в размерах, «портрет» ее клеток разнообразен – в зависимости от фазы развития каждой клетки. Это как кубик Рубика. Как в этом случае быть? Выделить лимфоциты из опухоли, размножить в лаборатории и ввести обратно пациенту, предварительно уничтожив химиотерапией оставшиеся у пациента лимфоциты, поскольку какие‑то из них могут подавлять иммунный ответ. В этом случае «клонированные» в лаборатории лимфоциты будут разрушать опухоль.

Сейчас проводятся клинические исследования, в основном в США, для метастатической формы меланомы. Адепт этого направления в Америке – бывший хирург‑онколог Стив Розенберг. Он показал, что 50% пациентов, уже не отвечающих ни на какие методы лечения, реагируют на CAR‑T положительно. Объективный ответ получен у 10% пациентов. Это обнадеживает. Но не стоит забывать о том, что CAR‑T – весьма дорогой метод. «Биокад» заявлял, что создание одного индивидуального препарата может обойтись в 16 млн рублей. А чем терапия дороже, тем меньше пациентов смогут ее получить. Но в любом случае CAR‑T надо развивать, не забывая и о других видах иммунотерапии.

– И «Биокад», и «Р‑Фарм» по проекту CAR‑T с научными институтами – НМИЦ им. В.А. Алмазова и ПМГМУ им. И.М. Сеченова. Вам фармкомпании не предлагали поработать вместе?

– С «Биокадом» мы работаем по клиническим исследованиям иммуноонкологических препаратов. Наш продукт интересен фармкомпаниям, но они тоже неспособны объять необъятное, поэтому готовы вкладываться в разработку на паритетных началах а у нас пока такой возможности нет. Кроме того, по сравнению с CAR‑T наша технология сложнее с организационной точки зрения: чтобы работать с истощенной иммунной системой, нужно иметь свою клинику и штат врачей.

– Вы рассматриваете в перспективе создание на базе НМИЦ онкологии лаборатории полного цикла, способной обеспечивать вакцинами другие клиники?

– Конечно, такие планы есть. Но в нынешних неопределенных условиях мы пока можем только объединиться с коллегами. В ближайшее время мы организуем Ассоциацию биомедицинских клеточных продуктов, как раз призванную развивать полный цикл производства, – ради снижения стоимости вакцин и других продуктов. В Петербурге есть почти все для этого – я имею в виду предприятия, которые производят компоненты для вакцины. Для организации полного цикла нужно лицензировать производство, получить сертификат GMP, все это требует для начала нормативного обоснования, а затем финансов. Сейчас готовится Национальная программа по борьбе с онкозаболеваниями, надеюсь, и на наше направление получится изыскать средства.

– У ассоциации уже есть конкретные предложения по развитию отрасли?

– Да, мы подготовили целый пакет различных уточнений и предложений. Важно обозначить в подзаконных актах, каким образом будет осуществляться лицензирование производства, какие требования следует предъявлять к средам и самому продукту, какую подготовку должны иметь биотехнологи. Кроме того, мы предлагаем Минздраву сохранить уже существующие наработки. Важно, чтобы нас не отбросили снова на экспериментальную стадию. Проверить еще раз эффективность разработок можно, главное, чтобы в целом процесс не останавливался.

– Когда вы ожидаете принятия закона о минимально манипулируемых клеточных продуктах?

– Мы понимаем, что документ будет принят в обозримом будущем, и надеемся, что он будет более тщательно проработан, чем 180‑ФЗ. Мы в любом случае сделаем все, чтобы ему соответствовать. Но самым важным остается вопрос финансирования. Как обычно бывает? Научное учреждение разрабатывает и передает компетенции клинике или фармкомпании. Мы не против такого пути, но необходимо, чтобы разработки и их авторы достойно финансировались. Зарплаты в науке и в практической сфере кратно разнятся, и не в пользу ученых. А мы готовим специалистов не для того, чтобы они куда‑то ушли. Мы не бедствуем, зарабатываем как можем сами, также лаборатория получает дополнительные средства из бюджета Центра, но тем не менее.

Ирина балдуева, нмиц петрова, клеточная терапия, дендритно-клеточная вакцина, центр клеточных технологий, бмкп, минимально манипулируемый клеточный продукт, вакцина