Из скольких этапов состоит процесс мейоза. Мейоз и митоз - отличие, фазы

Мейоз (от греч.мейозис – уменьшение) – это особый тип деления эукариотических клеток, при котором после однократного удвоения ДНК клеткаделится дважды , и из одной диплоидной клетки образуются 4 гаплоидные. Состоит из 2-х последовательных делений (обозначаютсяIиII); каждое из них, подобно митозу, включает 4 фазы (профазу, метафазу, анафазу, телофазу) и цитокинез.

Фазы мейоза:

Профаза I , она сложная, делится на 5 стадий:

1. Лептонема (от греч.leptos – тонкий,nema – нить) – хромосомы спирализуются и становятся видны как тонкие нити. Каждая гомологичная хромосома уже реплицирована на 99,9% и состоит из двух сестринских хроматид, связанных между собой в районе центромеры. Содержание генетического материала –2 n 2 xp 4 c . Хромосомы с помощью белковых скоплений (прикрепительных дисков ) закреплены обоими концами на внутренней мембране ядерной оболочки. Ядерная оболочка сохраняется, ядрышко видно.

2. Зигонема (от греч.zygon – парный) – гомологичные диплоидные хромосомы устремляются друг к другу и соединяются сначала в области центромеры, а затем – по всей длине (конъюгация ). Образуютсябиваленты (от лат.bi – двойной,valens – сильный), илитетрады хроматид. Число бивалентов соответствует гаплоидному набору хромосом, содержание генетического материала можно записать как1 n 4 xp 8 c . Каждая хромосома в одном биваленте происходит либо от отца, либо от матери.Половые хромосомы располагаются около внутренней ядерной мембраны. Эта область называетсяполовым пузырьком.

Между гомологичными хромосомами в каждом биваленте образуются специализированные синаптонемальные комплексы (от греч.synapsis – связь, соединение), которые представляют собой белковые структуры. При большом увеличении в комплексе видны две параллельные белковые нити толщиной 10 нм каждая, соединенные тонкими поперечными полосами размерами около 7 нм, по обе стороны от них лежат хромосомы в виде множества петель.

В центре комплекса проходит осевой элемент толщиной 20 – 40 нм. Синаптонемальный комплекс сравнивают сверевочной лестницей , стороны которой образованы гомологичными хромосомами. Более точное сравнение –застежка типа «молния» .

К концу зигонемы каждая пара гомологичных хромосом связана между собой с помощью синаптонемальных комплексов. Лишь половые хромосомы XиYконъюгируют не полностью, т. к. они неполностью гомологичны.

3. В пахинеме (от греч.pahys – толстый) биваленты укорачиваются и утолщаются. Между хроматидами материнского и отцовского происхождения в нескольких местах возникают соединения –хиазмы (от греч.chiazma – перекрест). В области каждой хиазмы формируется комплекс белков, участвующих врекомбинации (d~ 90 нм), и происходит обмен соответствующих участков гомологичных хромосом – от отцовской к материнской и наоборот. Этот процесс называюткросссинговером (от англ.с rossing - over – перекресток). В каждом биваленте человека, например, кроссинговер происходит в двух – трех участках.

4. В диплонеме (от греч.diploos – двойной) синаптонемальные комплексы распадаются, и гомологичные хромосомы каждого бивалентаотодвигаются друг от друга , но связь между ними сохраняется в зонах хиазм.

5. Диакинез (от греч.diakinein – проходить через). В диакинезе завершается конденсация хромосом, они отделяются от ядерной оболочки, но гомологичные хромосомы продолжают еще оставаться связанными между собой концевыми участками, а сестринские хроматиды каждой хромосомы – центромерами. Биваленты приобретают причудливую формуколец, крестов, восьмерок и т. д. В это время разрушаются ядерная оболочка и ядрышки. Реплицированные центриоли направляются к полюсам, к центромерам хромосом прикрепляются нити веретена деления.

В целом профаза мейоза очень длительна. При развитии спермиев она может длиться несколько суток, а при развитии яйцеклеток – в течение многих лет.

Метафаза I напоминает аналогичную стадию митоза. Хромосомы устанавливаются в экваториальной плоскости, образуя метафазную пластинку. В отличие от митоза, микротрубочки веретена прикрепляются к центромере каждой хромосомы лишь с одной стороны (со стороны полюса), а центромеры гомологичных хромосом расположены по обеим сторонам экватора. Связь между хромосомами с помощью хиазм продолжает сохраняться.

В анафазе I хиазмы распадаются, гомологичные хромосомы отделяются друг от друга и расходятся к полюсам.Центромеры этих хромосом, однако, в отличие от анафазы митоза,не реплицируются , а значит, сестринские хроматиды не расходятся. Расхождение хромосом носитслучайный характер . Содержание генетической информации становится1 n 2 xp 4 c у каждого полюса клетки, а в целом в клетке –2(1 n 2 xp 4 c ) .

В телофазе I , как и при митозе, формируются ядерные оболочки и ядрышки, образуется и углубляетсяборозда деления. Затем происходитцитокинез . В отличие от митоза, деспирализации хромосом не происходит.

В результате мейоза Iобразуются 2 дочерние клетки, содержащие гаплоидный набор хромосом; при этом каждая хромосома имеет 2 генетически отличные (рекомбинантные) хроматиды:1 n 2 xp 4 c . Следовательно, в результате мейозаIпроисходитредукция (уменьшение вдвое) числа хромосом, откуда и название первого деления –редукционное .

После окончания мейоза Iнаступает короткий промежуток -интеркинез , в течение которого не происходит репликации ДНК и удвоения хроматид.

Профаза II недлительна, и конъюгации хромосом при этом не наступает.

В метафазе II хромосомы выстраиваются в плоскости экватора.

В анафазе II ДНК в области центромеры реплицируется, как это происходит и в анафазе митоза, хроматиды расходятся к полюсам.

Послетелофазы II ицитокинеза II образуются дочерние клетки с содержанием генетического материала в каждой –1 n 1 xp 2 c . В целом, второе деление называетсяэквационным (уравнительным).

Итак, в результате двух последовательных делений мейоза образуются 4 клетки, каждая из которых несет гаплоидный набор хромосом.

Мейоз - это деление диплоидных клеток, в результате которого образуются гаплоидные клетки. То есть из каждой пары гомологичных хромосом материнской клетки в дочерние попадает лишь одна хромосома. Мейоз лежит в основе формирования половых клеток – гамет. В результате слияния мужской и женской гамет диплоидный набор восстанавливается. Таким образом, одно из важных значений мейоза - это обеспечение постоянства числа хромосом у вида при половом размножении.

В клетке, которая приступает к мейотическому делению, уже произошло удвоение (репликация) хромосом , также как это происходит в интерфазе митоза. Так что каждая хромосома состоит из двух хроматид, и количество хромосом диплоидное. То есть по количеству генетической информации клетки вступающие в митоз и мейоз одинаковы.

В отличие от митоза мейоз протекает в два деления. В результате первого деления гомологичные хромосомы каждой пары расходятся в разные дочерние клетки, и образуются две клетки с гаплоидным числом хромосом, но каждая хромосома состоит из двух хроматид. Второе деление протекает также как митотическое, т. к. происходит разделение хроматид каждой хромосомы, и в дочерние клетки попадает по одной хроматиде каждой хромосомы.

Таким образом в результате мейоза образуется четыре клетки с гаплоидным набором хромосом. У самцов все четыре становятся сперматозоидами. А вот у самок только одна становится яйцеклеткой, другие отмирают. Это связано с тем, что только в одной клетке концентрируется запас питательных веществ.

Стадии, или фазы, первого мейотического деления:

  1. Профаза I. Спирализация хромосом. Гомологичные хромосомы располагаются параллельно друг другу и обмениваются некоторыми гомологичными участками (конъюгация хромосом и кроссинговер, в результате которого происходит перекомбинация генов). Разрушается ядерная оболочка, начинает формироваться веретено деления.
  2. Метафаза I. Пары гомологичных хромосом располагаются в экваториальной плоскости клетки. К центромере каждой хромосомы присоединяется нить веретена деления. Причем к каждой только одна таким образом, что к одной гомологичной хромосоме присоединена нить с одного полюса клетки, а к другой – с другого.
  3. Анафаза I. Каждая хромосома из пары гомологичных отходит к своему полюсу клетки. При этом каждая хромосома продолжает состоять из двух хроматид.
  4. Телофаза I. Образуются две клетки, содержащие гаплоидный набор удвоенных хромосом.

Стадии, или фазы, второго мейотического деления:

  1. Профаза II. Разрушение ядерных оболочек, формирование веретена деления.
  2. Метафаза II. Хромосомы располагаются в экваториальной плоскости, к ним присоединяются нити веретена деления. Причем таким образом, что к каждой центромере присоединяются две нити - одна с одного полюса, другая - с другого.
  3. Анафаза II. Хроматиды каждой хромосомы разделяются в области центромер, и каждая из пары сестринских хроматид уходит к своему полюсу.
  4. Телофаза II. Формирование ядер, раскручивание хромосом, деление цитоплазмы.

На схеме показано поведение при мейозе только одной пары гомологичных хромосом. В реальных клетках их больше. Так в клетках человека содержится 23 пары. На схеме видно, что дочерние клетки генетически отличны друг от друга. Это важное отличие мейоза от митоза.

Следует отметить другое важное значение мейоза (первое, как уже было указано, – это обеспечение механизма полового размножения). В результате кроссинговера создаются новые комбинации генов. Они же создаются в результате независимого друг от друга расхождения хромосом при мейозе. Поэтому мейоз лежит в основе комбинативной изменчивости организмов, которая в свою очередь является одним из источников естественного отбора, т. е. эволюции.

Деление клеток посредством мейоза проходит в два основных этапа: мейоз I и мейоз II. В конце мейотического процесса образуются четыре . Прежде чем делящаяся клетка попадет в мейоз, она проходит через период , называемый интерфазой.

Интерфаза

  • Фаза G1: этап развития клетки перед синтезом ДНК. На этой стадии клетка подготавливаясь к делению увеличивается в массе.
  • S-фаза: период, в течение которого синтезируется ДНК. Для большинства клеток эта фаза занимает короткий промежуток времени.
  • Фаза G2: период после синтеза ДНК, но до начала профазы. Клетка продолжает синтезировать дополнительные белки и увеличиваться в размерах.

В последней фазе интерфазы клетка все еще имеет нуклеолы. окружено ядерной мембраной, а клеточное хромосомы дублируются, но находятся в форме . В две пары , образованных из репликации одной пары, расположены за пределами ядра. В конце интерфазы клетка переходит в первый этап мейоза.

Мейоз I:

Профаза I

В профазе I мейоза происходят следующие изменения:

  • Хромосомы конденсируются и присоединяются к ядерной оболочке.
  • Возникает синапсис (попарное сближение гомологичных хромосом) и образуется тетрада. Каждая тетрада состоит из четырех хроматид.
  • Может произойти генетическая рекомбинация.
  • Хромосомы сгущаются и отсоединяются от ядерной оболочки.
  • Подобно , центриоли мигрируют друг от друга, а ядерная оболочка и ядрышки разрушаются.
  • Хромосомы начинают миграцию к метафазной (экваториальной) пластине.

В конце профазы I клетка входит в метафазу I.

Метафаза I

В метафазе I мейоза происходят следующие изменения:

  • Тетрады выравниваются на метафазной пластине.
  • гомологичных хромосом ориентированы на противоположные полюса клетки.

В конце метафазы I клетка входит в анафазу I.

Анафаза I

В анафазе I мейоза происходят происходят следующие изменения:

  • Хромосомы перемещаются в противоположные концы клетки. Подобно митозу, кинетохоры взаимодействуют с микротрубочками, чтобы переместить хромосомы к полюсам клетки.
  • В отличие от митоза, остаются вместе после того, как перемещаются в противоположные полюса.

В конце анафазы I клетка входит в телофазу I.

Телофаза I

В телофазе I мейоза происходят следующие изменения:

  • Волокна веретена продолжают перемещать гомологичные хромосомы на полюса.
  • Как только движение завершено, каждый полюс клетки имеет гаплоидное количество хромосом.
  • В большинстве случаев цитокинез (деление ) происходит одновременно с телофазой I.
  • В конце телофазы I и цитокинеза образуются две дочерние клетки, каждая из которых имеет половину числа хромосом исходной родительской клетки.
  • В зависимости от типа клетки могут возникать различные процессы при подготовке к мейозу II. Однако генетический материал не реплицируется снова.

В конце телофазы I клетка входит в профазу II.

Мейоз II:

Профаза II

В профазе II мейоза происходят следующие изменения:

  • Ядерная и ядра разрушаются, пока появляется веретено деления.
  • Хромосомы больше не реплицируются в этой фазе.
  • Хромосомы начинают мигрировать к метафазной пластинке II (на экваторе клеток).

В конце профазы II клетки входят в метафазу II.

Метафаза II

В метафазе II мейоза происходят следующие изменения:

  • Хромосомы выстраиваются на метафазной пластинке II в центре клеток.
  • Кинетохорные нити сестринских хроматид расходятся к противоположным полюсам.

В конце метафазы II клетки входят в анафазу II.

Анафаза II

В анафазе II мейоза происходят следующие изменения:

  • Сестринские хроматиды разделяются и начинают перемещаться к противоположным концам (полюсам) клетки. Волокна веретена деления, не связанные с хроматидами, вытягиваются и удлиняют клетки.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается полной хромосомой, называемые .
  • При подготовке к следующему этапу мейоза два полюса клеток также отдаляются друг от друга во время анафазы II. В конце анафазы II каждый полюс содержит полную компиляцию хромосом.

После анафазы II клетки входят в телофазу II.

Телофаза II

В телофазе II мейоза происходят следующие изменения:

  • Образуются отдельные ядра на противоположных полюсах.
  • Происходит цитокинез (деление цитоплазмы и образование новых клеток).
  • В конце мейоза II производятся четыре дочерние клетки. Каждая клетка имеет половину числа хромосом от исходной родительской клетки.

Результат мейоза

Конечным результатом мейоза является производство четырех дочерних клеток. Эти клетки имеют в двое меньше хромосом относительно родительской. При мейозе продуцируются только половые . Другие делятся посредством митоза. Когда половые объединяются во время оплодотворения, они становятся . Диплоидные клетки имеют полный набор гомологичных хромосом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

Что такое мейоз?

Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

В переводе с древнегреческого языка, мейоз обозначает уменьшение.

Данный процесс происходит в два этапа:

  • Редукционный ;

На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

  • Эквационный ;

В ходе второго деления гаплоидность клеток сохраняется.

ТОП-4 статьи которые читают вместе с этой

Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

Фазы мейоза

В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

Первое деление:

Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

Стадия

Признак

Лептотена

Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

Зиготена

Гомологичные хромосомы соединяются в пары.

Пахитена

По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

Диплотена

Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

Диакинез

Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

Рис. 1. Схема мейоза первого этапа деления

Второе деление имеет такие признаки:

  • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
  • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
  • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
  • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

Рис. 2. Схема мейоза второго этапа деления

В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

Значение мейоза

В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

В природе мейоз имеет огромное значение, а именно:

  • Это один из основных этапов гаметогенеза;

Рис. 3. Схема гаметогенеза

  • Осуществляет передачу генетического кода при размножении;
  • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

Что мы узнали?

Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 654.

Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное, или мейоз I)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное, или мейоз II)

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Типы мейоза. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

Биологическое значение мейоза. Немецкий биолог Август Вайсман (1887) теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.