Квартирный гаситель гидроударов. Компенсатор гидроударов во внутренних системах водоснабжения FAR

Общие сведения о гидравлическом ударе

Гидравлический удар – это скачкообразное изменение давление жидкости, протекающей в напорном трубопроводе, возникающее при резком изменении скорости потока. В более развернутом смысле, гидравлический удар представляет собой быстротечное чередование «скачков» и «провалов» давления, сопровождающееся деформацией жидкости и стенок трубы, а также акустическим эффектом, похожим на удар молотком по стальной трубе. При слабых гидравлических ударах звук проявляется в виде «металлических» щелчков, однако даже при таких, казалось бы, незначительных ударах давление в трубопроводе может возрастать весьма значительно.

Стадии гидравлического удара можно проиллюстрироват ь на следующем примере (рис.1 ): пусть на конце квартирного трубопровода, присоединенного к домовому стояку, установлен однорычажный кран или смеситель (именно такие смесители позволяют относительно быстро перекрывать поток).

Рис.1. Стадии гидравлического удара

При перекрытии крана происходят следующие процессы:

  1. Пока кран открыт, жидкость движется по квартирному трубопроводу со скоростью «ν ». При этом в стояке и квартирном трубопроводе давление одинаковое (p ).
  2. При перекрытии крана и резком торможении потока кинетическая энергия потока переходит в работу деформации стенок трубы и жидкости. Стенки трубы растягиваются, а жидкость сжимается, что ведет к увеличению давления на величинуΔp (ударное давление). Зона, в которой произошло увеличение давления называется зоной сжатия ударной волной, а ее крайнее сечение называется фронтом ударной волны. Фронт ударной волны распространяется в сторону стояка со скоростью «с». Здесь хотелось бы отметить, что допущение о несжимаемости воды, принимаемое при гидравлических расчетах, в данном случае не применяется, т.к. реальная вода – сжимаемая жидкость, имеющая коэффициент объемного сжатия 4,9х10 -10 1/Па. То есть при давлении 20 400 бар (2040 МПа) объем воды уменьшается в два раза.
  3. Когда фронт ударной волны дойдет до стояка, вся жидкость в квартирном трубопроводе окажется сжатой, а стенки квартирного трубопровода – растянутыми.
  4. Объем жидкости в домовой системе гораздо больше, чем в квартирной разводке, поэтому, когда фронт ударной волны доходит до стояка, избыточное давление жидкости большей частью сглаживается за счет расширения сечения и включения в работу общего объема жидкости в домовой системе. Давление в квартирном трубопроводе начинает выравниваться со стояковым давлением. Но при этом квартирный трубопровод за счет упругости материала стенок восстанавливает свое первоначальное сечение, сжимая жидкость и выдавливая ее в стояк. Зона снятия деформации со стенок трубопровода распространяется к крану со скоростью «с ».
  5. В момент, когда давление в квартирном трубопроводе будет равно первоначальному, также как и скорость жидкости, направление потока будет обратное («нулевая точка»).
  6. Теперь жидкость в трубопроводе со скоростью «ν » стремится «оторваться» от крана. Возникает «зона разряжения ударной волны». В этой зоне скорость потока нулевая, а давление жидкости становится ниже первоначального, что приводит к сжатию стенок трубы (уменьшению диаметра). Фронт зоны разряжения передвигается к стояку со скоростью «с ». При значительной первоначальной скорости потока разряжение в трубе может привести к снижению давления ниже атмосферного, а также к нарушению неразрывности потока (кавитации). В этом случае в трубопроводе около крана появляется кавитационный пузырь, схлопывание которого приводит к тому, что давление жидкости в зоне отраженной ударной волны становится больше, чем этот же показатель в прямой ударной волне.
  7. При достижении фронта сжатия ударной волны стояка скорость потока в квартирном трубопроводе нулевая, а давление жидкости – ниже первоначального и ниже, чем давление в стояке. Стенки трубопровода сжаты.
  8. Перепад давлений между жидкостью в стояке и квартирном трубопроводе вызывает поступление жидкости в квартирный трубопровод и выравниванию давлений до первоначального значения. В связи с этим стенки трубы также начинают приобретать первоначальные очертания. Так образовывается отраженная ударная волна, и циклы снова повторяются до полного угасания. При этом промежуток времени, в течение которого проходят все стадии и циклы гидравлического удара, не превышает, как правило, 0,001–0,06 с. Количество циклов может быть различным и зависит от характеристик системы.

На рис. 2 стадии гидравлического удара показаны в графическом виде.

Рис. 2. Графики изменения давления при гидравлическом ударе.

График на рис. 2а показывает развитие гидравлического удара, когда давление жидкости в зоне разряжения ударной волны не падает ниже атмосферного (линия 0).

График на рис. 2б отображает ударную волну, зона разряжения которой находится ниже атмосферного давления, но гидравлическая сплошность среды не нарушается. В этом случае давление жидкости в зоне разряжения ниже атмосферного, но эффект кавитации не наблюдается.

График на рис.2в отображает случай, когда нарушается гидравлическая неразрывность потока, то есть образуется кавитационная зона, последующее схлопывание которой приводит к возрастанию давления в отраженной ударной волне.

Разновидности гидравлических ударов и основные расчетные положения

В зависимости от скорости, с которой происходит закрытие запорного органа на трубопроводе, гидравлический удар может быть «прямым» и непрямым». «Прямым» называется удар, при котором перекрытие потока происходит за время меньшее, чем период удара, то есть выполняется условие:

Т 3 ≤ 2L/c,

где Т 3 – время закрытия запорного органа, с; L – длина трубопровода от запорного устройства до точки, в которой поддерживается постоянное давление (в квартире – до стояка), м; с – скорость ударной волны, м/с.

В противном случае гидравлический удар называется непрямым. При непрямом ударе скачок давления значительно меньше по величине, так как часть энергии потока демпфируется частичной утечкой через запорный орган.

В зависимости от степени перекрытия потока гидравлический удар может быть полным и неполным. Полным является удар, при котором запорный орган полностью перекрывает поток. Если же этого не происходит, то есть часть потока продолжает протекать через запорный орган, то гидравлический удар будет неполным. В этом случае расчетной скоростью для определения величины гидравлического удара станет разница скоростей потока до и после перекрытия. Величину повышения давления при прямом полном гидравлическом ударе можно определить по формуле Н.Е. Жуковского (в западной технической литературе формула приписывается Alievi и Michaud):

Δp = ρ · ν · c, Па ,

где ρ – плотность транспортируемой жидкости, кг/м 3 ; ν – скорость транспортируемой жидкости до момента внезапного торможения, м/с; с – скорость распространения ударной волны, м/с.

В свою очередь скорость распространения ударной волны с определяется по формуле:

где c 0 - скорость распространения звука в жидкости (для воды – 1425 м/с, для других жидкостей можно принимать по табл. 1 ); D – диаметр трубопровода, м; δ – толщина стенки трубы, м; Е ж – объемный модуль упругости жидкости (можно принимать по табл. 2 ), Па; Е ст – модуль упругости материала стенок трубы, Па (можно принимать по табл. 3 ).

Таблица 1. Характеристики жидкостей

Таблица 2. Характеристики материалов стенок труб

Если учесть, что скорость движения воды в квартирных системах не должна превышать 3 м/с (п.7.6. СНиП 2.04.01), то для трубопроводов из различных материалов можно вычислить величину повышения давления при возможном прямом полном гидравлическом ударе. Такие сводные данные по некоторым трубам представлены в табл. 3 .

Таблица 3. Повышение давление при гидравлическом ударе при скорости потока 3 м/с

Материал и габариты труб

Скорость ударной волны, м/с

Δр , бар

Металлополимер

Полиэтилен

Полипропилен

Сталь (ВГП нормальные трубы)

При непрямом гидравлическом ударе повышение давления рассчитывается по формуле:

В табл. 4 приведено среднее время срабатывания основной квартирной арматуры. Для каждого типа этой арматуры рассчитана длина трубопровода, более которой гидравлический удар перестает быть прямым.

Таблица 4. Длина участка прямого удара для водозапорной арматуры

Возможные последствия гидравлических ударов

В квартирных сетях возникновение гидравлических ударов, конечно, не влечет таких масштабных разрушительных последствий, как на магистральных трубопроводах большого диаметра. Однако и здесь они могут доставить массу хлопот и убытков, если не учитывать возможность их появления.

Периодически повторяющиеся гидравлические удары в квартирной трубной разводке могут стать причиной следующих неприятностей:

– сокращение срока службы трубопроводов. Нормативный срок службы внутренних трубопроводов определяется по совокупности характеристик (температура, давление, время), в которых эксплуатируется труба. Даже столь кратковременные, но часто повторяющиеся, знакопеременные скачки и провалы давления, происходящие при гидравлическом ударе, существенно искажают картину эксплуатационног о режима трубопровода, сокращая срок его безаварийной эксплуатации. В большей степени это относится к полимерным и многослойным трубопроводам;

– выдавливание прокладок и уплотнителей в арматуре и соединителях трубопроводов. Этому подвержены такие элементы, как поршневые редукторы давления, шаровые краны, вентили и смесители с резиновыми сальниковыми кольцами, уплотнительные кольца обжимных и пресс-соединител ей, а также кольца полусгонов («американок»). В квартирных водосчетчиках выдавливание уплотнительного кольца между измерительной камерой и счетным механизмом может привести к попаданию воды в счетный механизм (рис.3);

Рис. 3 . Попадание воды в счетный механизм водосчетчика в результате выдавливания прокладки

– даже однократный гидравлический удар может полностью вывести из строя контрольно-измер ительные приборы, установленные в квартире. Например, изгиб стрелки манометра от взаимодействия с ограничительным штифтом – явный признак имевшего место гидравлического удара (рис. 4);

Рис. 4. Характерное повреждение манометра гидравлическим ударом

– каждый гидроудар в квартирном трубопроводе из полимерных материалов, выполненном на обжимных, прессовых или надвижных соединителях, неизбежно приводит к микроскопическом у «сползанию» соединителя с трубопровода. В конце концов, может наступить момент, когда очередной гидроудар станет критическим – труба полностью «выползет» из соединителя (рис. 5);

Рис. 5. Нарушение обжимного соединения МПТ в результате воздействия гидроудара

– кавитационные явления, которые могут сопровождать гидравлический удар, нередко являются причиной появления каверн в золотнике и корпусе запорной арматуры. Схлопывание вакуумных пузырьков при кавитации просто «выгрызает» куски металла с поверхности, на которой они образуются. В результате золотник перестает выполнять свою функцию, то есть, герметичность запорного органа нарушается. Да и корпус такой арматуры очень быстро выйдет из строя (рис. 6);

Рис. 6. Кавитационное разрушение внутренней поверхности сгона перед электромагнитным клапаном

– особую опасность для квартирных трубопроводов, выполненных из многослойных труб, представляет зона разряжения ударной волны при гидравлическом ударе. При клеевом слое низкого качества или наличии непроклеенных участков, образующийся в трубе вакуум отрывает внутренний слой трубы, заставляя его «схлопываться» (рис.7, 8).

Рис. 7. Многослойная полипропиленовая труба, пострадавшая от гидравлического удара

Рис. 8. «Схлопнувшаяся» металлополимерна я труба

При частичном схлопывании труба будет продолжать выполнять свою функцию, но с гораздо большим гидравлическим сопротивлением. Однако может произойти и полное схлопывание – в этом случае труба будет перекрыта своим же внутренним слоем. К сожалению, ГОСТ 53630-2009 «Трубы напорные многослойные» не требует проведения испытания образцов труб при внутреннем давлении ниже атмосферного. Однако ряд производителей, зная о подобной проблеме, включают в технические условия обязательный пункт о проверке трубы под разряжением. В частности, каждый рулон многослойных труб VALTEC подключается к вакуумному насосу, доводящему абсолютное давление в трубе до 0,2 атм (–0,8 бар избыточного). После чего с помощью компрессора через трубу прогоняется пенополистирольн ый шарик с диаметром, чуть меньшим проектного внутреннего диаметра трубы. Рулоны, через которые шарик не смог пройти, беспощадно бракуются и уничтожаются;

– еще одна опасность подстерегает при гидравлическом ударе внутренние трубопроводы горячего водоснабжения. Как известно, температура кипения воды находится в тесной зависимости от давления (табл. 5 ).

Таблица 5. Зависимость температуры кипения воды от давления

Если, допустим, в квартирный трубопровод поступает горячая вода с температурой 70 °С, а в зоне разрежения гидроудара давление снижается до абсолютного значения 0,3 атм, то в этой зоне вода превратится в пар. Учитывая, что объем пара при нормальных условиях почти в 1200 раз больше объема такой же массы воды, следует ожидать, что данное явление может привести к еще большему росту давления в зоне сжатия ударной волны.

Способы защиты от гидроударов в квартирных системах

Самым действенным и надежным способом защиты от гидравлического удара является увеличение времени перекрытия потока запорным органом. Именно этот способ используется на магистральных трубопроводах. Плавное закрытие задвижки не вызывает никаких разрушительных возмущений в потоке и позволяет избавиться от необходимости установки громоздких и дорогих демпфирующих устройств. В квартирных системах такой способ не всегда приемлем, т.к. в наш обиход прочно вошли и «однорукие» рычажные смесители, электромагнитные клапаны бытовой техники, и прочая арматура, способная перекрыть поток в короткий промежуток времени. В связи с этим квартирные инженерные системы уже на стадии проекта должны обязательно проектироваться с учетом опасности возникновения гидроудара. Конструктивные мероприятия, такие как использование эластичных вставок, компенсационных петель и расширителей, широкого распространения не получили. Наибольшей популярностью в настоящее время пользуется специально разработанная для этой цели арматура – пневматические (поршневые, рис. 9а, и мембранные, рис. 9б) или пружинные (рис.9в) гасители гидроударов.

Рис. 9. Типы гасителей гидроударов

В пневматических гасителе кинетическая энергия потока жидкости гасится энергией сжатия воздуха, давление которого изменяется по адиабате с показателем К = 1,4. Объем воздушной камеры пневматического гасителя определяется из выражения:

где P 0 – начальное давление в воздушной камере, Р К – конечное (предельное) давление в воздушной камере. В приведенной формуле левая часть представляет собой выражение для кинетической энергии потока жидкости, а правая – энергии сжатия воздуха.

Параметры пружин для пружинных компенсаторов находят из выражения:

где D пр – средний диаметр пружины, I – число витков пружины, G – модуль сдвига, F к – конечная сила, действующая на пружину, F 0 – начальная сила, действующая на пружину.

В среде проектировщиков и монтажников бытует мнение, что обратные клапаны и редукторы давления тоже обладают способностью к гашению гидроударов.

Обратные клапаны, действительно, отсекая часть трубопровода в момент резкого перекрытия потока, уменьшают расчетную длину трубопровода, превращая прямой удар в непрямой, меньшей энергии. Однако, резко закрываясь под воздействием стадии сжатия ударной волны, клапан сам превращается в причину гидроудара в трубопроводе, расположенном до него. В стадии разряжения клапан снова открывается, причем, в зависимости от соотношения длин труб до клапана и после него, может настать такой момент, когда ударные волны двух участков сложатся, усилив скачок давления. Поршневые редукторы давления не могут служить гасителями гидравлических ударов в силу своей высокой инерционности – из-за работы сил трения в уплотнителях поршней, они просто не успевают отреагировать на мгновенное изменение давления. Кроме того, такие редукторы сами нуждаются в защите от гидроударов, вызывающих выдавливание уплотнительных колец из гнезд поршней.

Способностью частично поглощать энергию гидроударов обладают мембранные редукторы давления, однако они рассчитаны совсем на другие силовые воздействия, поэтому работа по гашению частых гидроударов быстро выведет их из строя. Кроме того, резкое перекрытие редуктора при ударной волне приводит, как в случае с обратным клапаном, к возникновению ударной волны на участке до редуктора, не защищенном мембраной.

Помимо всего прочего, квартирные гасители гидроударов кроме выполнения своей основной задачи выполняют еще несколько функций, немаловажных для безопасной эксплуатации квартирных трубопроводов. Эти функции будут рассмотрены на примере мембранного гасителя гидроударов VALTEC VT.CAR19 (рис. 10).

Гаситель гидроударов VT.CAR19

Рис. 10. Гаситель гидроударов VALTEC VT.CAR19

Квартирный гаситель гидроударов VALTEC VT.CAR19 конструктивно состоит (рис. 11) из шаровидного корпуса, выполненного из нержавеющей стали AISI 304L (1 ), с завальцованной мембраной из EPDM (2 ). Благодаря небольшим выпуклостям на поверхности мембраны обеспечиваются ее неплотное примыкание к корпусу и максимальная площадь контакта мембраны с транспортируемой средой. Воздушная камера гасителя находится под заводским давлением 3,5 бара, что обеспечивает защиту квартирных трубопроводов, давление в которых не превышает 3 бар. Гаситель может защищать и трубопроводы с рабочим давлением до 10 бар, но в этом случае необходимо с помощью насоса, присоединяемого к ниппелю (3 ) увеличить давление в воздушной камере до значения 10,5 бара. В случае, когда рабочее давление в квартирной сети ниже 3 бар, рекомендуется через ниппель (3 ) выпустить часть воздуха из камеры до значения Рраб + 0,5 бар.

Рис.11. Конструкция гасителя VALTEC VT.CAR19

Технические характеристики и габаритные размеры гасителя приведены в табл. 6 .

Таблица 6. Технические характеристики VALTEC VT.CAR19

Наименование характеристики

Значение

Рабочий объем

Заводское значение предварительного давления в воздушной камере

Максимальное давление при гидроударе

Максимальное рабочее давление в защищаемом квартирном трубопроводе

Диапазон температур рабочей среды

Размеры (см. эскиз):

Н – высота

O – диаметр

G – присоединительна я резьба

Материал:

Нержавеющая сталь AISI 304L

Мембрана

Гаситель способен защищать трубопроводы от гидроударов, давление при которых возрастает до 20 бар, поэтому перед установкой гасителя необходимо проверить, какой величины гидравлический удар может произойти в конкретном квартирном трубопроводе. Расчет возможного давления при гидроударе Р гу можно рассчитать по формуле:

, бар.

Отношение Eводы/Ест для трубопроводов из разных материалов принимается по табл. 2 .

Надежно защищая квартирные трубопроводы от гидроударов, гаситель VT.CAR19 в силу своих конструктивных особенностей способен воспринимать излишек воды, образующийся при нагревании поступившей холодной воды в период перерыва в водопользовании. Например, если в квартиру, оборудованную на вводе редуктором или обратным клапаном поступила вода с температурой +5°С, и за ночь она нагрелась до 25°С (обычная температура воздуха в санузле), то давление в отсеченном участке трубопровода возрастет на:

ΔP = β t ·Δt/β v = 0,00015 · (25 – 5) / 4,9 · 10 –9 = 61,2 бара.

В приведенной формуле β t – коэффициент температурного расширения воды, а β v – коэффициент объемного сжатия воды (величина, обратная модулю упругости). Формула не учитывает температурное расширение материала самой трубы, но практика показывает, что каждый градус повышения температуры воды в трубопроводе повышает давление от 2 до 2,5 бара.

Здесь-то и востребуется вторая функция мембранного гасителя гидроударов. Приняв в себя часть воды из нагревающегося трубопровода, он избавит его от чрезмерной нагрузки и поможет избежать аварийной ситуации. В табл. 7 приведены предельные длины трубопроводов, защищаемые гасителем VT.CAR19 от температурного расширения жидкости.

Таблица 7. Предельная длина трубопроводов, защищаемых от температурного расширения (при ΔТ = 20°C)

Что касается квартирных трубопроводов горячего водоснабжения, то и здесь гаситель VT.CAR19 выполняет важную задачу по предотвращению вскипания воды в зоне разряжения ударной волны. Поглощая энергию гидравлического удара, гаситель ликвидирует и эту опасность.

Наибольшая эффективность гасителя гидроударов достигается при его установке непосредственно перед защищаемой арматурой. В этом случае возможность появления гидроудара полностью исключается (рис. 12).

Рис. 12. Установка гасителей непосредственно перед защищаемыми приборами

В квартирных системах, где трубопроводы не имеют значительной протяженности, допускается устанавливать один гаситель на группу приборов. В этом случае следует проверить, чтобы общая длина защищаемых одним гасителем участков трубопроводов не превышала значений, изложенных в табл. 8 .

Таблица 8. Длина защищаемых одним гасителем участков трубопроводов

При превышении указанных в таблице значений необходимо устанавливать не один, а несколько гасителей. В случае, когда расчетное давление при гидравлическом ударе превышает максимально допустимое давление для данного гасителя (20 бар для VT.CAR19), следует выбрать другой тип прибора с более высокими прочностными характеристиками.

В соответствии с п.7.1.4. СП 30.13330.2012 «Внутренний водопровод и канализация зданий», положения которого вступили в силу с 1 января 2013 года, конструкция водоразборной и запорной арматуры должна обеспечивать плавное открывание и закрывание потока воды. Но это требование навряд ли будет выполняться, т.к. торговля предлагает жильцам огромный ассортимент арматуры и приборов, в которых плавное регулирование невозможно. Учитывая это, ведущие проектные и строительные организации нашей страны уже сейчас предусматривают в проектах установку квартирных гасителей гидравлических ударов. Например, ДСК-1 города Москвы перестраивает производство на выполнение узлов ввода квартирного водопровода по схеме, отображенной на рис. 13.

Рис. 13. Узел квартирного ввода водопровода ДСК-1

Давление, как один из параметров системы отопления и водоснабжения, играет ключевую роль. Именно за счет разности давлений образуется течение жидкости. В современных системах отопления используют гидравлические насосы. От показателя давления зависит скорость течения, напор и объем. В системах открытого типа, которые повсеместно использовались в прошлом, давление жидкости равнялось атмосферному, поэтому повышение температуры носителя сопровождалось перетеканием жидкости в расширительный бак.

Недостатком такой системы служило постепенное испарение жидкости, невозможность повышения температуры кипения, незащищенность от гидравлических ударов.

Жидкость практически не сжимается. При сжатии слоев возникают большие по значению силы упругости, которые могут с высокой скоростью передаваться в среде. Резкое изменение давления в одной части квартирной магистрали могло привести к разрушению элементов трубопровода в другой части.

Спровоцировать гидроудар может открытие крана или любой заслонки. Ярким примером служит разрушение вновь проложенной магистрали при первом ее запуске, когда при закрытых вентилях смесителей открывается подача воды.

Закрытая система отопления

Если трубопровод сделать герметичным, то при нагревании жидкости резко начнет повышаться давление, из-за чего могут трубы или соединения начать разрушаться. Однако давление, превышающее атмосферное, дает немало преимуществ.

  • Как известно, повышается температура кипения, следовательно, можно более эффективно использовать носитель.
  • При повышенном давлении увеличивается эффективность работы гидронасоса.
  • Герметичная система не нуждается в периодической подпитке.

Регулятор давления в системе закрытого типа совмещает в себе функции мембранного компенсатора и расширителя. Он представляет собой емкость, разделенную на две части эластичной перегородкой.


В одной части находится воздух под давлением, а другая его часть соединена с магистралью. При тепловом расширении жидкость давит на мембрану, вследствие чего она прогибается в зону, наполненную воздухом. При уменьшении объема воздуха его давление возрастает и начинает компенсировать избыточное давление жидкости.

Когда квартирная система отопления находится в рабочем состоянии, то мембранный компенсатор пребывает в динамическом равновесии. Каждому увеличению давления со стороны жидкости сопутствует возрастание давления воздуха. Но оказывается, такая система не только способна гасить тепловые расширения, но работает как гаситель гидроударов.

Устройство мембранного компенсатора

На рынке строительных материалов и деталей к системам отопления расширительный бак известен, как мембранный компенсатор гидроударов. Он может устанавливаться не только в систему отопления, но и в систему водоснабжения. Основное назначение емкости – разгрузка системы в случае повышения давления.

Мембрана, выполненная из эластичного материала, является регулятором давления. По форме резервуар не подлежит стандартизации. Выбор внешней формы зависит исключительно из условий окружающего пространства и эстетичности. Чаще всего встречаются компенсаторы в виде цилиндрического баллона.


Та половина резервуара, где находится воздух, имеет вывод с золотником. Через него можно добавлять или уменьшать количество воздуха в резервуаре. При покупке мембранного компенсатора воздух находится под давлением, равным десятым долям атмосферного давления. При вводе в эксплуатацию это давление увеличивается согласно показателям системы. Компенсатор имеет только один подсоединительный патрубок, ведь сквозного течения жидкости не предусмотрено.

Разновидности

Есть несколько видов действующих классификаций устройств. Наиболее практичной считается группировка по типам применяемых мембран. На сегодняшний день практически все устройства выпускаются с диафрагменной мембраной. Баллон неразборный, выполненный из прочной стали. Обычно состоит из двух полусфер, сваренных между собой. Мембрана монтируется таким образом, чтобы полость резервуара делилась на две части. Подсоединительный патрубок остается в одной части, а золотник – в другой.

Баллонная мембрана подлежит замене. Но современные материалы способны выдерживать повышенные нагрузки довольно длительное время без потери целостности и упругости, поэтому необходимость в замене мембраны практически отпала. Резервуар для баллонной мембраны разборный. Вода находится в резиновой камере и не соприкасается с внутренними стенками резервуара. Шаровая мембрана сегодня практически не используется, она считается раритетом.


Правила монтажа

Если ранее к расширительному бачку предъявлялись определенные требования по монтажу, то в закрытой системе компенсатор может устанавливаться в любом месте. Однако это только теоретическое предположение. Требования расположения в высшей точке уже не актуальны, так как по закону Паскаля давление везде одинаковое.

Компенсатор монтируется там, где имеются сантехнические узлы, вводы или развязки.

  • С одной стороны, это обусловлено тем, что узлы являются частой причиной гидроударов, поэтому устройство, гасящее избыточное давление, целесообразнее устанавливать в непосредственной близости от кранов и вентилей.
  • С другой стороны, здесь весомую роль играет эстетичность. На фоне прямолинейных труб, аккуратно уложенных по периметру комнаты, баллон смотреться ну никак не будет.


Важным условием монтажа является отсутствие длинного или изогнутого отвода к баллону. Так как в отводе вода не циркулирует, то это может привести к застою и, как следствие, к размножению микробов. Отводы должны быть короткими и прямыми.

Из этих соображений и стоит выбирать место локализации компенсатора.

Обзор моделей мембранных компенсаторов

Сравнение технических характеристик разных моделей устройств помогает тем, кто впервые столкнулся с необходимостью их применения сделать правильный выбор. То же самое можно сказать и про мембранные компенсаторы. Модель Valtec Car 19 идеально подходит для бытового применения в квартирах.

Основное его назначение – компенсация переменных значений давления в водопроводах и системах отопления. Модели valtec зачастую используют исключительно в качестве расширительного бачка. Корпус компенсатора достаточно прочный, к тому же, он выполнен из нержавейки. При гидроударе резервуар способен принять 162 г воды. Но это не такой уж низкий показатель, так как давление в магистрали в это время составляет от 10 до 12 бар.

При монтаже номинальное давление в резервуаре равняется 3 бар, что в большинстве случаев подходит для многих систем без перенастройки. Некоторые модели снабжены манометрами для более удобной настройки компенсатора.

Модель FAR FA 2895 12 от компании FAR завоевала свою нишу на рынке компенсирующих устройств благодаря своей надежности при относительно недорогой стоимости. Показатели температуры и давления позволяют компенсатору работать как в промышленных системах, так и в системах домашнего применения.

Устройство резервуара ничем практически не отличается от аналогов. В качестве материала применяется латунный сплав, а мембрана выполнена из прочного пластика. Чтобы этот пластик не деформировался под действием воздуха, когда резервуар пустой, но удерживается пружинами. Несомненным качеством моделей far является их небольшой размер, они просты для монтажа даже в условиях стесненных габаритов пространства.

Производители Reflex и caleffi специализируются на производстве арматуры для водопроводов. Они предлагают целую линию компенсаторов, которые отличаются тем, что используются в более крупных системах. Объем бака Reflex может достигать сотен литров. Нередко такие устройства становятся гидроаккумуляторами, способными накапливать огромное количество воды. Такие аккумуляторы обеспечивают целостность насосов при отключении подачи водоснабжения.

Доступность устройств и гибкая ценовая политика производителей позволяет обеспечивать защиту систем водоснабжения не только на крупных предприятиях, но и в обычных домашних условиях. Перечисленные устройства имеют достаточно высокий ресурс при условии, что все технические параметры подобраны правильным образом.

Жители новостроек, принимая квартиры, с удивлением обнаруживают «бублики» - петли на пластиковых стояках горячей воды под потолком. Одни просто прячут за гипсокартонный короб, другие требуют объяснений. Зачем труба закруглена? Так застройщик пытается застраховать жильцов от разрыва труб. Удалять бублики нельзя, но можно заменить более эстетичным вариантом.

Что такое гидроудар и почему его боятся

Гидроудар - резкий и очень сильный скачок давления в трубах. Способен разорвать соединения и сами трубы, сорвать вентили и устроить потоп. Небольшие гидроудары действуют постепенно, раз за разом выдавливая прокладки, медленно, но верно деформируя и уничтожая микротравмами трубы водоснабжения и отопления.

Внешне слабые гидроудары распознаются как вибрация по трубе, гул, хлопки, щелчки или другие посторонние звуки, которые особенно раздражают жильцов, чьи соседи встают раньше или ложатся позже.

Как возникает гидроудар?

Это явление, когда в одном участке трубы вода уже остановилась, а сзади на неё напирают продолжающие течь массы:

  • при резком перекрытии водотока;
  • при резком запуске насоса.

В системе отопления гидроудар провоцируют воздушные пробки.


Факторы риска

От чего зависит сила гидроудара:

  1. От того, насколько резко произошёл запор или запуск водотока.
  2. Объёма воды в трубах и, соответственно, их размера.
  3. Скорости движения жидкости и её напора.
  4. Материала труб.

Формула
Частота ударной волны = 2 длины трубы / скорость распространения удара в конкретном материале.

Скорость волны в пластике - 300-500 м/с. Для сравнения, в стали - 900-1300, а в чугуне 1000-1200 м/с. Из этого следует, что в пластике удар будет сильнее, а вот чугунные подводки фактически гасят гидроудар.


Что происходит с трубой?

Ничего хорошего: её распирает вширь, в длину она укорачивается. Под напором труба вполне может лопнуть. Чаще страдают смесители и соединительные колена: швы расходятся, прокладки смещаются или разрываются, начинается течь.

Из воспоминаний слесаря
Я вот третий десяток в сантехническом мире, но видел по-настоящему гидроудар только один раз (1994 г.) в элеваторном узле <…>. Гидроудар - это когда стрелка <…> улетает в одну секунду с 8 bar до 60.

Страшнее всего гидроудар в элеваторном узле, у насосной станции и других общедомовых коммуникациях. В гораздо меньшей степени колебаниям подвержены трубы в квартирах, однако стоит понимать, что сечение современных стояков уже (напор, соответственно, выше), чем у советских стальных, а материал более мобилен и менее вынослив. Прежде всего, опасность представляют горячие стояки - под нагревом материалы расширяются сильнее.

Меры защиты

Чтобы избежать разрывов, в подвалах на все стояки, а в квартирах на горячие ставят специальные устройства, которые не дают колебаниям уничтожить трубы.

Блокирующие устройства, их плюсы и минусы

Это изогнутые волной, петлёй или п-образно трубы из обычного или специального материала, например, армированного пластика или каучука длиной 20-40 см, самый простой и дешёвый вариант.

Амортизирующие подводки дёшевы, при этом вполне выдерживают тот гидроудар, который на практике приходится испытывать пластиковым коммуникациям в квартире, не требуют спецобслуживания или периодической замены деталей.


Сильфонный амортизатор - гофрированная труба из пластичного металла, способная компенсировать линейное расширение, удлинение или оба явления сразу, более простые - однослойные, более совершенные - заключённые в кожух, дающий дополнительную амортизацию.

Сильфонные амортизаторы в кожухе также неприхотливы, при этом более эстетичны, чем предыдущий вариант.

Важно
Именно амортизаторы-подводки (особенно петельные загибы) и сильфоны рассчитаны на то, чтобы компенсировать удлинение стояка, это их основная функция, а погашение гидроудара, скорее, вторичное. Для пластиковых труб, особенно не очень качественного материала, они так же важны, как и компенсаторы.

Шунты - металлические трубки, которые вставляются в трубу вместе через основной клапан в направлении тока воды и стравливающие лишний объём воды за клапан, малоэффективны в старых, забитых ржавчиной трубах, больше подходят для пластиковых коммуникаций.

Шунты просты в установке, не требуют размыкать трубу, но теряют эффективность пропорционально засорению трубы, а в бытовом контуре этот показатель может быть достаточно высоким.


(самые распространённые - Valtec ) - устройства, напоминающие шар или бак и представляющие собой полость с эластичной мембраной, которая вдавливается при резком повышении напора воды, а затем постепенно расправляется, возвращая воду в ток, но уже без ударной силы.

Мембранные компенсаторы держат до 30 бар, и это довольно хороший показатель. Их уязвимое место - эластичная мембрана, которая со временем деформируется, рвётся или твердеет из-за солей и присадок в воде.

Поршневые, или пружинные (самый популярный сегодня - FAR ) - устройства, похожие на колпак и работающие по тому же принципу, что и мембранные, с той разницей, что мембрану заменяет пружина: при увеличении объёма вода выталкивает в полость пластиковый диск и тем самым сжимает пружину, затем механизм возвращается в исходное положение, возвращая воду в контур.


Поршневые компенсаторы выдерживают скачки до 50 бар и способы защитить от настоящего, не слабого гидроудара. К тому же они более устойчивы к износу, чем мембранные, однако и они не застрахованы от протечек в местах уплотнения или соединения с трубой, поэтому нуждаются в периодической проверке и замене.


Регулирующие клапаны - системы, которые обычно входят в комплексную защиту от гидроудара и устанавливаются на контроллерах внешних и общедомовых контуров.

Система байпас - труба-перемычка, которая позволяет перенаправить ток водного теплоносителя с тем, чтобы избежать гидроудара и разрывов в батареях.


Мнение специалистов
Слесари старой школы считают установку внутриквартирных гасителей пустой тратой сил и средств. По их замечанию, сильный гидроудар грозит водоподготовительным каналам в подвале, и только. Другие мастера отмечают, что в прежние времена все краны закрывались медленно, вентилем, теперь же они в основном рычажные (шаровые), и бытовая техника (стиральные, посудомоечные машины) и бачки унитаза также перекрывают ток воды достаточно резко. Поэтому в идеале гаситель должен стоять перед каждым таким потребителем.

Комплексные меры профилактики:

  • плавное закрывание кранов и клапанов;
  • регулятор мощности насоса, который замедляет его на первых оборотах и не даёт спровоцировать ударную волну.

Собственно, к гасителям гидроудара всегда относились «змеевики» - волнообразный изгиб стояка горячей воды, отведённый в ванную комнату из туалета. Хозяйки использовали его как полотенцесушитель. По сути же труба замедляла ток воды и снимала колебания, снижая риск гидроудара. Тем не менее, на стыке квартир довольно часто появлялась течь, особенно с годами.

Металл быстрее стареет, чем качественный пластик, установка шаровых кранов существенно повысила нагрузку на конструкцию, да и разница в материалах, когда сверху поставили пластик, а снизу оставили металл или наоборот, даёт о себе знать. Из-за этого «змеевики» не срабатывают.

Как установить

Общие правила:

  • амортизатор устанавливается на определённой длине трубы (например, под потолком каждого нечётного этажа);
  • лучший вариант - когда компенсатор стоит перед вентилем, краном, клапаном бытовой техники, кранов и др. потребителями;
  • допустимо также располагать компенсатор после отводов коллектора (т. е. после обратных клапанов) в квартире (см. ниже фото из блога С. Савицкого «Идеи для ремонта»);
  • если размещается редуктор, компенсатор следует после него;
  • компенсатор обязательно располагается непосредственно на трубе или на угловом переходе, а не на её тупиковом отводке (см. фото ниже);
  • шунт устанавливается строго по направлению тока воды;
  • регулятор или клапан ставится у контроллера и подключается к нему.


Хорошо, разобрались с трубами и стояками. А что делать, если в доме стоит электрический накопительный водонагреватель или газовая «колонка»? Первые, как правило, оборудованы собственными защитными клапанами. В случае же «колонки» или любого другого проточного водонагревателя компенсатор нужно размещать после агрегата - это продлит жизнь его шлангам и сальникам.

Полный прайс-лист на клапаны FAR в формате Excel вы можете скачать .

Описание

Явление "гидроудара" возникает в случае внезапного открытия или закрытия оборудования (привода смесительного крана, насоса и т. п.), которое приводит к появлению избыточного давления в системе. Компенсатор гидроударов FAR принимает "на себя" избыточное давление, сохраняя нормальные рабочие параметры для компонентов системы. Также его задачей является значительное снижение шума от вибрации, которая возникает в результате закрытия потребителя воды.

Характеристики

  • Присоединение - НР 1/2";
  • Максимальное давление - 50 бар;
  • Номинальное давление - 10 бар;
  • Максимальная рабочая температура - 100°C.
Конструкция

1. Верхняя часть корпуса - латунь CW617N;
2. Пружина - AISI 302;
3. Уплотнительное кольцо - EPDM;
4. Диск - пластик;
5. Нижняя часть корпуса - латунь CW617N;
6. Зажимное кольцо - латунь CW614N;
7. Уплотнение - EPDM.

Принцип работы

Уменьшение избыточного давления происходит посредством воздушной камеры и стальной пружины, соединенной с пластиковым диском, имеющим двойное уплотнение, которые поглощают большую часть избыточного давления.

В открытом положении потребителя давление в трубопроводе остается постоянным.

При закрытии потребителя давление в трубопроводе увеличивается, и компенсатор гидроударов FAR поглощает избыточное давление, обеспечивая защиту компонентов системы.

Установка



Устанавливая компенсатор гидроударов необходимо убедиться, что его расположение не создает областей, где может происходить застой воды, который приводит к размножению бактерий. Например, следует избегать установки компенсатора в верхней части стояка.

Размеры