Наименьший общий знаменатель (НОЗ) алгебраических дробей, его нахождение. Наименьшее общее кратное НОК


Материал этой статьи объясняет, как найти наименьший общий знаменатель и как привести дроби к общему знаменателю . Сначала даны определения общего знаменателя дробей и наименьшего общего знаменателя, а также показано, как найти общий знаменатель дробей. Дальше приведено правило приведения дробей к общему знаменателю и рассмотрены примеры применения этого правила. В заключение разобраны примеры приведения трех и большего количества дробей к общему знаменателю.

Навигация по странице.

Что называют приведением дробей к общему знаменателю?

Теперь мы можем сказать, что такое приведение дробей к общему знаменателю. Приведение дробей к общему знаменателю – это умножение числителей и знаменателей данных дробей на такие дополнительные множители, что в результате получаются дроби с одинаковыми знаменателями.

Общий знаменатель, определение, примеры

Теперь пришло время дать определение общего знаменателя дробей.

Иными словами, общим знаменателем некоторого набора обыкновенных дробей является любое натуральное число, которое делится на все знаменатели данных дробей.

Из озвученного определения следует, что данный набор дробей имеет бесконечно много общих знаменателей, так как существует бесконечное множество общих кратных всех знаменателей исходного набора дробей.

Определение общего знаменателя дробей позволяет находить общие знаменатели данных дробей. Пусть, к примеру, даны дроби 1/4 и 5/6 , их знаменатели равны 4 и 6 соответственно. Положительными общими кратными чисел 4 и 6 являются числа 12 , 24 , 36 , 48 , … Любое из этих чисел является общим знаменателем дробей 1/4 и 5/6 .

Для закрепления материала рассмотрим решение следующего примера.

Пример.

Можно ли дроби 2/3 , 23/6 и 7/12 привести к общему знаменателю 150 ?

Решение.

Для ответа на поставленный вопрос нам нужно выяснить, является ли число 150 общим кратным знаменателей 3 , 6 и 12 . Для этого проверим, делится ли 150 нацело на каждое из этих чисел (при необходимости смотрите правила и примеры деления натуральных чисел , а также правила и примеры деления натуральных чисел с остатком): 150:3=50 , 150:6=25 , 150:12=12 (ост. 6) .

Итак, 150 не делится нацело на 12 , следовательно, 150 не является общим кратным чисел 3 , 6 и 12 . Следовательно, число 150 не может быть общим знаменателем исходных дробей.

Ответ:

Нельзя.

Наименьший общий знаменатель, как его найти?

В множестве чисел, являющихся общими знаменателями данных дробей, существует наименьшее натуральное число , которое называют наименьшим общим знаменателем. Сформулируем определение наименьшего общего знаменателя данных дробей.

Определение.

Наименьший общий знаменатель – это наименьшее число, из всех общих знаменателей данных дробей.

Осталось разобраться с вопросом, как найти наименьший общий делитель.

Так как является наименьшим положительным общим делителем данного набора чисел, то НОК знаменателей данных дробей представляет собой наименьший общий знаменатель данных дробей.

Таким образом, нахождение наименьшего общего знаменателя дробей сводится к знаменателей этих дробей. Разберем решение примера.

Пример.

Найдите наименьший общий знаменатель дробей 3/10 и 277/28 .

Решение.

Знаменатели данных дробей равны 10 и 28 . Искомый наименьший общий знаменатель находится как НОК чисел 10 и 28 . В нашем случае легко : так как 10=2·5 , а 28=2·2·7 , то НОК(15, 28)=2·2·5·7=140 .

Ответ:

140 .

Как привести дроби к общему знаменателю? Правило, примеры, решения

Обычно обыкновенные дроби приводят к наименьшему общему знаменателю. Сейчас мы запишем правило, которое объясняет, как привести дроби к наименьшему общему знаменателю.

Правило приведения дробей к наименьшему общему знаменателю состоит из трех шагов:

  • Во-первых, находится наименьший общий знаменатель дробей.
  • Во-вторых, для каждой дроби вычисляется дополнительный множитель, для чего наименьший общий знаменатель делится на знаменатель каждой дроби.
  • В-третьих, числитель и знаменатель каждой дроби умножается на ее дополнительный множитель.

Применим озвученное правило к решению следующего примера.

Пример.

Приведите дроби 5/14 и 7/18 к наименьшему общему знаменателю.

Решение.

Выполним все шаги алгоритма приведения дробей к наименьшему общему знаменателю.

Сначала находим наименьший общий знаменатель, который равен наименьшему общему кратному чисел 14 и 18 . Так как 14=2·7 и 18=2·3·3 , то НОК(14, 18)=2·3·3·7=126 .

Теперь вычисляем дополнительные множители, с помощью которых дроби 5/14 и 7/18 будут приведены к знаменателю 126 . Для дроби 5/14 дополнительный множитель равен 126:14=9 , а для дроби 7/18 дополнительный множитель равен 126:18=7 .

Осталось умножить числители и знаменатели дробей 5/14 и 7/18 на дополнительные множители 9 и 7 соответственно. Имеем и .

Итак, приведение дробей 5/14 и 7/18 к наименьшему общему знаменателю завершено. В итоге получились дроби 45/126 и 49/126 .

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется приведением к общему знаменателю. А искомые числа, «выравнивающие» знаменатели, называются дополнительными множителями.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6 . Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2 . Это число намного меньше произведения 8 · 12 = 96 .

Наименьшее число, которое делится на каждый из знаменателей, называется их наименьшим общим кратным (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a ; b ) . Например, НОК(16; 24) = 48 ; НОК(8; 12) = 24 .

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3 . Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4 . Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702 , следовательно, для первой дроби дополнительный множитель равен 3.

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.

Большинство действий с алгебраическими дробями, такие, например, как сложение и вычитание, требуют предварительного приведения этих дробей к одинаковым знаменателям. Такие знаменатели также часто обозначаются словосочетанием «общий знаменатель». В данной теме мы рассмотрим определение понятий «общий знаменатель алгебраических дробей» и «наименьший общий знаменатель алгебраических дробей (НОЗ)», рассмотрим по пунктам алгоритм нахождения общего знаменателя и решим несколько задач по теме.

Yandex.RTB R-A-339285-1

Общий знаменатель алгебраических дробей

Если говорить про обыкновенные дроби, то общим знаменателем является такое число, которое делится на любой из знаменателей исходных дробей. Для обыкновенных дробей 1 2 и 5 9 число 36 может быть общим знаменателем, так как без остатка делится на 2 и на 9 .

Общий знаменатель алгебраических дробей определяется похожим образом, только вместо чисел используются многочлены, так как именно они стоят в числителях и знаменателях алгебраической дроби.

Определение 1

Общий знаменатель алгебраической дроби – это многочлен, который делится на знаменатель любой из дробей.

В связи с особенностями алгебраических дробей, речь о которых пойдет ниже, мы чаще будем иметь дело с общими знаменателями, представленными в виде произведения, а не в виде стандартного многочлена.

Пример 1

Многочлену, записанному в виде произведения 3 · x 2 · (x + 1) , соответствует многочлен стандартного вида 3 · x 3 + 3 · x 2 . Этот многочлен может быть общим знаменателем алгебраических дробей 2 x , - 3 · x · y x 2 и y + 3 x + 1 , в связи с тем, что он делится на x , на x 2 и на x + 1 . Информация о делимости многочленов есть в соответствующей теме нашего ресурса.

Наименьший общий знаменатель (НОЗ)

Для заданных алгебраических дробей количество общих знаменателей может быть бесконечное множество.

Пример 2

Возьмем для примера дроби 1 2 · x и x + 1 x 2 + 3 . Их общим знаменателем является 2 · x · (x 2 + 3) , как и − 2 · x · (x 2 + 3) , как и x · (x 2 + 3) , как и 6 , 4 · x · (x 2 + 3) · (y + y 4) , как и − 31 · x 5 · (x 2 + 3) 3 , и т.п.

При решении задач можно облегчить себе работу, используя общий знаменатель, который среди всего множества знаменателей имеет самый простой вид. Такой знаменатель часто обозначается как наименьший общий знаменатель.

Определение 2

Наименьший общий знаменатель алгебраических дробей – это общий знаменатель алгебраических дробей, который имеет самый простой вид.

К слову, термин «наименьший общий знаменатель» не является общепризнанным, потому лучше ограничиваться термином «общий знаменатель». И вот почему.

Ранее мы сфокусировали ваше внимание на фразе «знаменатель самого простого вида». Основной смысл этой фразы следующий: на знаменатель самого простого вида должен без остатка делиться любой другой общий знаменатель данных в условии задачи алгебраических дробей. При этом в произведении, которое является общим знаменателем дробей, можно использовать различные числовые коэффициенты.

Пример 3

Возьмем дроби 1 2 · x и x + 1 x 2 + 3 . Мы уже выяснили, что проще всего работать нам будет с общим знаменателем вида 2 · x · (x 2 + 3) . Также общим знаменателем для этих двух дробей может быть x · (x 2 + 3) , который не содержит числового коэффициента. Вопрос в том, какой из этих двух общих знаменателей считать наименьшим общим знаменателем дробей. Однозначного ответа нет, потому правильнее говорить просто об общем знаменателе, а в работу брать тот вариант, с которым работать будет удобнее всего. Так, мы можем использовать и такие общие знаменатели как x 2 · (x 2 + 3) · (y + y 4) или − 15 · x 5 · (x 2 + 3) 3 , которые имеют более сложный вид, но проводить с ними действия может быть сложнее.

Нахождение общего знаменателя алгебраических дробей: алгоритм действий

Предположим, что у нас имеется несколько алгебраических дробей, для которых нам необходимо отыскать общий знаменатель. Для решения этой задачи мы можем использовать следующий алгоритм действий. Сначала нам необходимо разложить на множители знаменатели исходных дробей. Затем мы составляем произведение, в которое последовательно включаем:

  • все множители из знаменателя первой дроби вместе со степенями;
  • все множители, присутствующие в знаменателе второй дроби, но которых нет в записанном произведении или их степень недостаточно;
  • все недостающие множители из знаменателя третьей дроби, и так далее.

Полученное произведение и будет общим знаменателем алгебраических дробей.

В качестве множителей произведения мы можем взять все знаменатели дробей, данных в условии задачи. Однако множитель, который мы получим в итоге, по смыслу будет далек от НОЗ и использование его будет иррациональным.

Пример 4

Определите общий знаменатель дробей 1 x 2 · y , 5 x + 1 и y - 3 x 5 · y .

Решение

В данном случае у нас нет необходимости раскладывать знаменатели исходных дробей на множители. Потому начнем применять алгоритм с составления произведения.

Из знаменателя первой дроби возьмем множитель x 2 · y , из знаменателя второй дроби множитель x + 1 . Получаем произведение x 2 · y · (x + 1) .

Знаменатель третьей дроби может дать нам множитель x 5 · y , однако в составленном нами ранее произведении уже есть множители x 2 и y . Следовательно, добавляем еще x 5 − 2 = x 3 . Получаем произведение x 2 · y · (x + 1) · x 3 , которое можно привести к виду x 5 · y · (x + 1) . Это и будет наш НОЗ алгебраических дробей.

Ответ: x 5 · y · (x + 1) .

Теперь рассмотрим примеры задач, когда в знаменателях алгебраических дробей есть целые числовые множители. В таких случаях мы также действуем по алгоритму, предварительно разложив целые числовые множители на простые множители.

Пример 5

Найдите общий знаменатель дробей 1 12 · x и 1 90 · x 2 .

Решение

Разложив числа в знаменателях дробей на простые множители, получаем 1 2 2 · 3 · x и 1 2 · 3 2 · 5 · x 2 . Теперь мы можем перейти к составлению общего знаменателя. Для этого из знаменателя первой дроби возьмем произведение 2 2 · 3 · x и добавим к нему множители 3 , 5 и x из знаменателя второй дроби. Получаем 2 2 · 3 · x · 3 · 5 · x = 180 · x 2 . Это и есть наш общий знаменатель.

Ответ: 180 · x 2 .

Если внимательно посмотреть на результаты двух разобранных примеров, то можно заметить, что общие знаменатели дробей содержат все множители, присутствующие в разложениях знаменателей, причем если некоторый множитель имеется в нескольких знаменателях, то он берется с наибольшим из имеющихся показателей степени. А если в знаменателях имеются целые коэффициенты, то в общем знаменателе присутствует числовой множитель, равный наименьшему общему кратному этих числовых коэффициентов.

Пример 6

В знаменателях обеих алгебраических дробей 1 12 · x и 1 90 · x 2 есть множитель x . Во втором случае множитель x возведен в квадрат. Для составления общего знаменателя это множитель нам необходимо взять в наибольшей степени, т.е. x 2 . Других множителей с переменными нет. Целые числовые коэффициенты исходных дробей 12 и 90 , а их наименьшее общее кратное равно 180 . Получается, что искомый общий знаменатель имеет вид 180 · x 2 .

Теперь мы можем записать еще один алгоритм нахождения общего множителя алгебраических дробей. Для этого мы:

  • раскладываем знаменатели всех дробей на множители;
  • составляем произведение всех буквенных множителей (при наличии множителя в нескольких разложениях, берем вариант с наибольшим показателем степени);
  • добавляем НОК числовых коэффициентов разложений к полученному произведению.

Приведенные алгоритмы равноценны, так что использовать в решении задач можно любой из них. Важно уделять внимание деталям.

Встречаются случаи, когда общие множители в знаменателях дробей могут быть незаметны за числовыми коэффициентами. Здесь целесообразно сначала вынести числовые коэффициенты при старших степенях переменных за скобки в каждом из множителей, имеющихся в знаменателе.

Пример 7

Какой общий знаменатель имеют дроби 3 5 - x и 5 - x · y 2 2 · x - 10 .

Решение

В первом случае за скобки необходимо вынести минус единицу. Получаем 3 - x - 5 . Умножаем числитель и знаменатель на - 1 для того, чтобы избавиться от минуса в знаменателе: - 3 x - 5 .

Во втором случае за скобку выносим двойку. Это позволяет нам получить дробь 5 - x · y 2 2 · x - 5 .

Очевидно, что общий знаменатель данных алгебраических дробей - 3 x - 5 и 5 - x · y 2 2 · x - 5 это 2 · (x − 5) .

Ответ: 2 · (x − 5) .

Данные в условии задачи дроби могут иметь дробные коэффициенты. В этих случаях необходимо сначала избавиться от дробных коэффициентов путем умножения числителя и знаменателя на некоторое число.

Пример 8

Упростите алгебраические дроби 1 2 · x + 1 1 14 · x 2 + 1 7 и - 2 2 3 · x 2 + 1 1 3 , после чего определите их общий знаменатель.

Решение

Избавимся от дробных коэффициентов, умножив числитель и знаменатель в первом случае на 14 , во втором случае на 3 . Получаем:

1 2 · x + 1 1 14 · x 2 + 1 7 = 14 · 1 2 · x + 1 14 · 1 14 · x 2 + 1 7 = 7 · x + 1 x 2 + 2 и - 2 2 3 · x 2 + 1 1 3 = 3 · - 2 3 · 2 3 · x 2 + 4 3 = - 6 2 · x 2 + 4 = - 6 2 · x 2 + 2 .

После проведенных преобразований становится понятно, что общий знаменатель – это 2 · (x 2 + 2) .

Ответ: 2 · (x 2 + 2) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Кратное число – это число, которое делится на данное число без остатка. Наименьшее общее кратное (НОК) группы чисел – это наименьшее число, которое делится без остатка на каждое число группы. Чтобы найти наименьшее общее кратное, нужно найти простые множители данных чисел. Также НОК можно вычислить с помощью ряда других методов, которые применимы к группам из двух и более чисел.

Шаги

Ряд кратных чисел

    Посмотрите на данные числа. Описанный здесь метод лучше применять, когда даны два числа, каждое из которых меньше 10. Если даны большие числа, воспользуйтесь другим методом.

    • Например, найдите наименьшее общее кратное чисел 5 и 8. Это небольшие числа, поэтому можно использовать данный метод.
  1. Кратное число – это число, которое делится на данное число без остатка. Кратные числа можно посмотреть в таблице умножения..

    • Например, числами, которые кратны 5, являются: 5, 10, 15, 20, 25, 30, 35, 40.
  2. Запишите ряд чисел, которые кратны первому числу. Сделайте это под кратными числами первого числа, чтобы сравнить два ряда чисел.

    • Например, числами, которые кратны 8, являются: 8, 16, 24, 32, 40, 48, 56, и 64.
  3. Найдите наименьшее число, которое присутствует в обоих рядах кратных чисел. Возможно, вам придется написать длинные ряды кратных чисел, чтобы найти общее число. Наименьшее число, которое присутствует в обоих рядах кратных чисел, является наименьшим общим кратным.

    • Например, наименьшим числом, которое присутствует в рядах кратных чисел 5 и 8, является число 40. Поэтому 40 – это наименьшее общее кратное чисел 5 и 8.

    Разложение на простые множители

    1. Посмотрите на данные числа. Описанный здесь метод лучше применять, когда даны два числа, каждое из которых больше 10. Если даны меньшие числа, воспользуйтесь другим методом.

      • Например, найдите наименьшее общее кратное чисел 20 и 84. Каждое из чисел больше 10, поэтому можно использовать данный метод.
    2. Разложите на простые множители первое число. То есть нужно найти такие простые числа, при перемножении которых получится данное число. Найдя простые множители, запишите их в виде равенства.

      • Например, 2 × 10 = 20 {\displaystyle {\mathbf {2} }\times 10=20} и 2 × 5 = 10 {\displaystyle {\mathbf {2} }\times {\mathbf {5} }=10} . Таким образом, простыми множителями числа 20 являются числа 2, 2 и 5. Запишите их в виде выражения: .
    3. Разложите на простые множители второе число. Сделайте это так же, как вы раскладывали на множители первое число, то есть найдите такие простые числа, при перемножении которых получится данное число.

      • Например, 2 × 42 = 84 {\displaystyle {\mathbf {2} }\times 42=84} , 7 × 6 = 42 {\displaystyle {\mathbf {7} }\times 6=42} и 3 × 2 = 6 {\displaystyle {\mathbf {3} }\times {\mathbf {2} }=6} . Таким образом, простыми множителями числа 84 являются числа 2, 7, 3 и 2. Запишите их в виде выражения: .
    4. Запишите множители, общие для обоих чисел. Запишите такие множители в виде операции умножения. По мере записи каждого множителя зачеркивайте его в обоих выражениях (выражения, которые описывают разложения чисел на простые множители).

      • Например, общим для обоих чисел является множитель 2, поэтому напишите 2 × {\displaystyle 2\times } и зачеркните 2 в обоих выражениях.
      • Общим для обоих чисел является еще один множитель 2, поэтому напишите 2 × 2 {\displaystyle 2\times 2} и зачеркните вторую 2 в обоих выражениях.
    5. К операции умножения добавьте оставшиеся множители. Это множители, которые не зачеркнуты в обоих выражениях, то есть множители, не являющиеся общими для обоих чисел.

      • Например, в выражении 20 = 2 × 2 × 5 {\displaystyle 20=2\times 2\times 5} зачеркнуты обе двойки (2), потому что они являются общими множителями. Не зачеркнут множитель 5, поэтому операцию умножения запишите так: 2 × 2 × 5 {\displaystyle 2\times 2\times 5}
      • В выражении 84 = 2 × 7 × 3 × 2 {\displaystyle 84=2\times 7\times 3\times 2} также зачеркнуты обе двойки (2). Не зачеркнуты множители 7 и 3, поэтому операцию умножения запишите так: 2 × 2 × 5 × 7 × 3 {\displaystyle 2\times 2\times 5\times 7\times 3} .
    6. Вычислите наименьшее общее кратное. Для этого перемножьте числа в записанной операции умножения.

      • Например, 2 × 2 × 5 × 7 × 3 = 420 {\displaystyle 2\times 2\times 5\times 7\times 3=420} . Таким образом, наименьшее общее кратное 20 и 84 равно 420.

    Нахождение общих делителей

    1. Нарисуйте сетку как для игры в крестики-нолики. Такая сетка представляет собой две параллельные прямые, которые пересекаются (под прямым углом) с другими двумя параллельными прямыми. Таким образом, получатся три строки и три столбца (сетка очень похожа на значок #). Первое число напишите в первой строке и втором столбце. Второе число напишите в первой строке и третьем столбце.

      • Например, найдите наименьшее общее кратное чисел 18 и 30. Число 18 напишите в первой строке и втором столбце, а число 30 напишите в первой строке и третьем столбце.
    2. Найдите делитель, общий для обоих чисел. Запишите его в первой строке и первом столбце. Лучше искать простые делители, но это не является обязательным условием.

      • Например, 18 и 30 – это четные числа, поэтому их общим делителем будет число 2. Таким образом, напишите 2 в первой строке и первом столбце.
    3. Разделите каждое число на первый делитель. Каждое частное запишите под соответствующим числом. Частное – это результат деления двух чисел.

      • Например, 18 ÷ 2 = 9 {\displaystyle 18\div 2=9} , поэтому запишите 9 под 18.
      • 30 ÷ 2 = 15 {\displaystyle 30\div 2=15} , поэтому запишите 15 под 30.
    4. Найдите делитель, общий для обоих частных. Если такого делителя нет, пропустите два следующих шага. В противном случае делитель запишите во второй строке и первом столбце.

      • Например, 9 и 15 делятся на 3, поэтому запишите 3 во второй строке и первом столбце.
    5. Разделите каждое частное на второй делитель. Каждый результат деления запишите под соответствующим частным.

      • Например, 9 ÷ 3 = 3 {\displaystyle 9\div 3=3} , поэтому запишите 3 под 9.
      • 15 ÷ 3 = 5 {\displaystyle 15\div 3=5} , поэтому запишите 5 под 15.
    6. Если нужно, дополните сетку дополнительными ячейками. Повторяйте описанные действия до тех пор, пока у частных не будет общего делителя.

    7. Обведите кружками числа в первом столбце и последней строке сетки. Затем выделенные числа запишите в виде операции умножения.

      • Например, числа 2 и 3 находятся в первом столбце, а числа 3 и 5 находятся в последней строке, поэтому операцию умножения запишите так: 2 × 3 × 3 × 5 {\displaystyle 2\times 3\times 3\times 5} .
    8. Найдите результат умножения чисел. Так вы вычислите наименьшее общее кратное двух данных чисел.

      • Например, 2 × 3 × 3 × 5 = 90 {\displaystyle 2\times 3\times 3\times 5=90} . Таким образом, наименьшее общее кратное 18 и 30 равно 90.

    Алгоритм Евклида

    1. Запомните терминологию, связанную с операцией деления. Делимое – это число, которое делят. Делитель – это число, на которое делят. Частное – это результат деления двух чисел. Остаток – это число, оставшееся при делении двух чисел.

      • Например, в выражении 15 ÷ 6 = 2 {\displaystyle 15\div 6=2} ост. 3:
        15 – это делимое
        6 – это делитель
        2 – это частное
        3 – это остаток.

При сложении и вычитании алгебраический дробей с разными знаменателями сначала дроби приводят к общему знаменателю . Это значит, находят такой один знаменатель, который делится на исходный знаменатель каждой алгебраической дроби, входящей в состав данного выражения.

Как известно, если числитель и знаменатель дроби умножить (или разделить) на одно и то же число, отличное от нуля, то значение дроби не изменится. Это является основным свойством дроби. Поэтому, когда дроби приводят к общему знаменателю, по-сути умножают исходный знаменатель каждой дроби на недостающий множитель до общего знаменателя. При этом надо умножить на этот множитель и числитель дроби (для каждой дроби он свой).

Например, дана такая сумма алгебраических дробей:

Требуется упростить выражение, т. е. сложить две алгебраические дроби. Для этого в первую очередь надо привести слагаемые-дроби к общему знаменателю. Первым делом следует найти одночлен, который делится и на 3x и на 2y. При этом желательно, чтобы он был наименьший, т. е. найти наименьшее общее кратное (НОК) для 3x и 2y.

Для числовых коэффициентов и переменных НОК ищется отдельно. НОК(3, 2) = 6, а НОК(x, y) = xy. Далее найденные значения перемножаются: 6xy.

Теперь надо определить, на какой множитель надо умножить 3x, чтобы получить 6xy:
6xy ÷ 3x = 2y

Значит, при приведении первой алгебраической дроби к общему знаменателю ее числитель надо умножить на 2y (знаменатель уже был умножен при приведении к общему знаменателю). Аналогично ищется множитель для числителя второй дроби. Он будет равен 3x.

Таким образом, получаем:

Далее уже можно действовать как с дробями с одинаковыми знаменателями: складываются числители, а в знаменателе пишется один общий:

После преобразований получается упрощенное выражение, представляющее собой одну алгебраическую дробь, являющуюся суммой двух исходных:

Алгебраические дроби в исходном выражении могут содержать знаменатели, представляющие собой многочлены, а не одночлены (как в приведенном выше примере). В таком случае, перед поиском общего знаменателя следует разложить знаменатели на множители (если это возможно). Далее общий знаменатель собирается из разных множителей. Если множитель есть в нескольких исходных знаменателях, то его берут единожды. Если множитель имеет разные степени в исходных знаменателях, то его берут с большей. Например:

Здесь многочлен a 2 – b 2 можно представить как произведение (a – b)(a + b). Множитель 2a – 2b раскладывается как 2(a – b). Таким образом, общий знаменатель будет равен 2(a – b)(a + b).