Нервный импульс. Передача нервного импульса в синапсе осуществляется Передается нервный импульс

Синапсы представляют собой коммуникационные структуры, которые формируются окончанием нервного волокна и прилегающей к нему мембраной мышечного волокна (пресинаптической нервной и постсинаптической мышечной мембранами).

Нервно-мышечная передача происходит в два этапа: первый -- на уровне аксона, второй -- на уровне синаптической мембраны(рис.6).

На месте окончаний аксона происходит три последовательных процесса.

  • 1. Синтез ацетилхолина от ацетата с образованием ацетилкоэнзима А до передачи группы ацетатов на холин под действием холинацетилазы.
  • 2. Накопление ацетилхолина в синаптических пузырьках происходит, вероятно, тремя разными путями. Пузырьки, находящиеся ближе к синаптической мембране, по-видимому, содержат кванты, которые могут быть использованы тотчас же или составить функциональный запас. В остальных синаптических пузырьках накопленные кванты мобилизуются, вероятно, после истощения функционального запаса. И, наконец, избыток ацетилхолина, не использованный нервной стимуляцией, обеспечивает повторное снабжение синаптических пузырьков.
  • 3. Освобождение ацетилхолина происходит в результате разрыва некоторых синаптических пузырьков под действием нервного двигательного импульса. Ацетилхолин проникает в течение нескольких миллисекунд через синаптическое пространство и соединяется с рецепторными протеинами, находящимися в пузырьках постсннаптической мембраны.

Второй этап осуществляется на уровне постсинаптической мембраны. Эта мембрана, находясь в состоянии покоя, поляризуется благодаря присутствию ионов Na+ на поверхности и ионов К+ в глубине. Это расположение обеспечивает равновесие, названное потенциалом покоя. Разность потенциалов между наружной и внутренней поверхностями мембраны в покое составляет 90 мВ. Поступление ацетилхолина на рецепторы изменяет проницаемость мембраны по отношению к ионам, приводя к изменению распределения ионов по обеим сторонам мембраны. При этом Na+ интенсивно проникает в глубину, а К наоборот, перемещается на поверхность. Электрическое равновесие нарушается, мембрана деполяризуется, и потенциал покоя становится потенциалом концевой пластинки двигательного нерва. Если потенциал двигательного нерва достигает порога 30 мВ, то он при распространении вызывает мышечное расслабление вследствие деполяризации.

Рис.6. Механизм нервно-мышечной передачи

Когда нервный импульс достигает окончания аксона, на деполяризованной пресинаптической мембране открываются потенциалзависимые Са2+ каналы. Вход Са2+ в аксональное расширение (пресинаптическую мембрану) способствует высвобождению химических нейромедиаторов, находящихся в виде везикул (пузырьков) из окончания аксона. Медиаторы (в нервно-мышечном синапсе это всегда ацетилхолин) синтезируются в соме нервной клетки и путем аксонального транспорта транспортируются к окончанию аксона, где и выполняют свою роль. Медиатор диффундирует через синаптическую щель и связывается со специфическими рецепторами на постсинаптической мембране. Так как медиатором в нервно-мышечном синапсе является ацетилхолин, то рецепторы постсинаптической мембраны называют холинорецепторами. В результате этого процесса на постсинаптической мембране открываются хемочувствительные Nа+-каналы, возникает деполяризация, величина которой различна, и зависит от количества выделенного медиатора. Чаще всего возникает локальный процесс, который называют потенциалом концевой пластинки (ПКП). При повышении частоты стимуляции нервного волокна, усиливается деполяризация пресинаптической мембраны, а, следовательно, возрастает количество выделяемого медиатора и число активированных хемочувствительных Nа+каналов на постсинаптической мембране. Таким образом, возникают ПКП, которые по амплитуде деполяризации суммируются до порогового уровня, после чего, на мембране мышечного волокна, окружающей синапс, возникает ПД, который обладает способностью к распространению вдоль мембраны мышечного волокна. Чувствительность постсинаптической мембраны регулируется активностью фермента - ацетилхолинэстеразы (АЦХ-Э), который гидролизует медиатор АЦХ на составные компоненты (ацетил и холин) и возвращает назад - в пресинаптическую бляшку для ресинтеза. Без удаления медиатора на постсинаптической мембране развивается длительная деполяризация, которая ведет к нарушению проведения возбуждения в синапсе - синаптической депрессии. Таким образом, синаптическая связь обеспечивает одностороннее проведение возбуждения с нерва на мышцу, однако на все эти процессы расходуется время (синаптичекая задержка), что приводит к низкой лабильности синапса по сравнению с нервным волокном.

Таким образом, нервно-мышечный синапс является «выгодным» местом, куда можно воздействовать фармакологическими препаратами, изменяя чувствительность рецептора, активность фермента. Эти явления будут часто встречаться в практике врача: например, при отравлении токсином ботулизма - блокируется высвобождение медиатора АЦХ (разглаживание морщин в косметической медицине), блокада холиноререпторов (курареподобными препаратами, бунгаротоксином) нарушает открытие Nа+ каналов на постсинаптической мембране. Фосфоорганические соединения (множество инсектицидов) нарушает эффективность АЦХ-Э и вызывает длительную деполяризацию постсинаптической мембраны. В клинике используют специфические блокаторы нервно-мышечного проведения: блокада холинорецепторов курареподобными препаратами, сукцинилхолином и другими конкурентными ингибиторами, вытесняющими АЦХ с холинорецептора. При заболевании миастении из-за дефицита холинорецепторов на постсинаптической мембране (из-за их аутолитического разрушения) возникает прогрессирующая мышечной слабость, вплоть до полной остановки мышечных сокращений (остановка дыхания). В этом случае используют блокаторы АЦХ-Э, что приводит к увеличению длительности связывания медиатора с меньшим количеством холинорецепторов и несколько увеличивает амплитуду деполяризации постсинаптической мембраны.

Мотонейрон.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов – нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления – аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну, подобно электрическим проводам присоединенным к домам.. Таким образом, один мотонейрон управляет целой группой волокон (так называемая нейромоторная единица ), которая работает как единое целое.

Мышца состоит из множества нейромоторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Рассмотрим более детальное строение клетки нейрона.

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон .

Нейроны – специализированные клетки, способные принимать, обрабатывать, передавать и хранить информацию, организовывать реакцию на раздражения, устанавливать контакты с другими нейронами, клетками органов.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый эндоплазматический ретикулум с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов).

Дендриты - ветвящиеся короткие отростки, воспринимающие сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей. Дендрит проводит нервные импульсы к телу нейрона.

Аксоны – длинный отросток, для проведения возбуждения от тела нейрона.

Уникальными способностями нейрона являются:

- способность генерировать электрические заряды
- передавать информацию с помощью специализированных окончаний – синапсов.

Нервный импульс.

Итак, как же происходит передача нервного импульса?
Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом.

В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее «бегущий» нервный импульс в процессе распространения постоянно восстанавливается (регенерирует).
Концентрации ионов (электрически заряженных атомов) – главным образом натрия и калия, а также органических веществ – вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. «потенциал покоя» равен примерно –70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией.
Плазматическая мембрана, окружающая нейрон, – сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться.
При раздражении нейрона некоторые из натриевых (Na+) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом – возникает т.н. «потенциал действия», т.е. нервный импульс. Затем натриевые каналы закрываются.
Во многих нейронах деполяризация вызывает также открытие калиевых (K+) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки – т.н. калий-натриевые насосы, обеспечивающие перемещение Na+ из клетки, а K+ внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции.
Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке.

Мы выяснили как нервный импульс проходит по нейрону, теперь разберемся с тем как же передается импульс от аксона к мышечному волокну.

Синапс.

Аксон размещается в мышечном волокне в своеобразных карманах, образующийся из выпячиваний аксона и цитоплазмы клеточного волокна.
Между ними образовывается нервно-мышечный синапс.

Нервно-мышечный синапс – нервное окончание между аксоном мотонейрона и мышечным волокном.

  1. Аксон.
  2. Клеточная мембрана.
  3. Синаптические везикулы аксона.
  4. Белок-рецептор.
  5. Митохондрия.

Синапс состоит из трех частей:
1) пресинаптического(отдающий) элемента, содержащего синаптические пузырьки (везикулы) с медиатором
2) синаптической щели (щель передачи)
3) постсинаптического(воспринимающий) элемента с белками-рецепторами, обеспечивающими взаимодействие медиатора с постсинаптической мембраной и белками-ферментами, разрушающими или инактивирующими медиатор.

Пресинаптический элемент – элемент который отдает нервный импульс.
Постсинаптический элемент – элемент принимающий нервный импульс.
Синаптическая щель – промежуток в котором происходит передача нервного импульса.

Когда нервный импульс в виде потенциала действия (трансмембранный ток, обусловленный ионами натрия и калия) «приходит» к синапсу, в пресинаптический элемент поступают ионы кальция.

Медиатор биологически активное вещество, выделяемое нервными окончаниями и передающее нервный импульс в синапсе. В передаче импульса к мышечному волокну используется медиаторацетилхолин.

Ионы кальция обеспечивают разрыв пузырьков и выход медиатора в синаптическую щель. Пройдя через синаптическую щель, медиатор связывается с белками-рецепторами на постсинаптической мембране. В результате этого взаимодействия на постсинаптической мембране возникает новый нервный импульс, который передается другим клеткам. После взаимодействия с рецепторами медиатор разрушается и удаляется белками-ферментами. Информация передается другим нервным клеткам в закодированном виде (частотные характеристики потенциалов, возникающих на постсинаптической мембране; упрощенным аналогом такого кода является штрих-код на упаковках товаров). «Расшифровка» происходит в соответствующих нервных центрах.
Не связавшийся с рецептором медиатор либо разрушается специальными ферментами, либо захватывается обратно в пузырьки пресинаптического окончания.

Завораживающее видео о том как проходит нервный импульс:

Еще более красивое видео

Синапс

Как проводится нервный импульс (слайд шоу)

Экстерорецептивная чувствительность

Первый нейрон

Импульсы от всех периферических рецепторов поступают в спинной мозг через задний корешок, который состоит из большого количества волокон, являющихся аксонами псевдоуниполярных клеток межпозвонкового (спинно-мозгового) узла. Назначение этих волокон различно.

Часть из них, войдя в задний рог, проходит по поперечнику спинного мозга к клеткам переднего рога (первый мотонейрон), тем самым выполняя роль афферентной части рефлекторной спинальной дуги кожных рефлексов.

Второй нейрон

Другая часть волокон заканчивается в клетках кларкова столба, откуда второй нейрон идет в дорсальных отделах боковых столбов спинного мозга под названием спиномозжечкового дорсального пучка Флексига. Третья группа волокон заканчивается у клеток желатинозной субстанции заднего рога. Отсюда вторые нейроны, образуя спиноталамический путь, совершают впереди центрального канала спинного мозга в передней серой спайке переход на противоположную сторону и по боковым столбам, а затем в составе медиальной петли доходят до зрительного бугра.

Третий нейрон

Третий нейрон идет от зрительного бугра через заднее бедро внутренней капсулы к корковому концу кожного анализатора (задняя центральная извилина). По этому пути передаются экстерорецептивные болевые и температурные, отчасти тактильные раздражения. Значит, экстерорецептивная чувствительность с левой половины туловища проводится по правой половине спинного мозга, с правой половины - по левой.

Проприоцептивная чувствительность

Первый нейрон

Иные соотношения у проприоцептивной чувствительности. Связанная с передачей этих раздражений четвертая группа волокон заднего корешка, войдя в спинной мозг, не заходит в серое вещество заднего рога, а непосредственно поднимается по задним столбам спинного мозга под названием нежного пучка (Голля), а в шейных отделах - клиновидного пучка (Бурдаха). От этих волокон отходят короткие коллатерали, которые подходят к клеткам передних рогов, являясь тем самым афферентной частью проприоцептивных спинальных рефлексов. Наиболее длинные волокна заднего корешка в виде первого нейрона (периферического, идущего, однако, на большом расстоянии в центральной нервной системе - по спинному мозгу) тянутся до нижних отделов продолговатого мозга, где заканчиваются в клетках ядра пучка Голля и ядра пучка Бурдаха.

Второй нейрон

Аксоны этих клеток, образующих второй нейрон проводников проприоцептивной чувствительности, переходят вскоре на другую сторону, занимая этим перекрестом межоливную область продолговатого мозга, которая носит название шва. Совершив переход на противоположную сторону, эти проводники образуют медиальную петлю, располагающуюся сначала в межоливном слое вещества продолговатого мозга, а затем в дорсальных отделах варолиева моста. Пройдя через ножки мозга, эти волокна входят в зрительный бугор, у клеток которого и заканчивается второй нейрон проводников проприоцептивной чувствительности.

Третий нейрон

Клетки зрительного бугра являются началом третьего нейрона, по которому раздражения проводятся через заднюю часть заднего бедра внутренней капсулы к задней и отчасти к передней центральной извилине (двигательному и кожному анализаторам). Здесь-то, в клетках коры, происходит анализ и синтез принесенных раздражений, и мы ощущаем прикосновение, движение и другие виды проприоцептивных раздражений. Таким образом, мышечные и отчасти тактильные раздражения с правой половины туловища идут по правой же половине спинного мозга, совершая переход на противоположную сторону только в продолговатом мозге.

Потенциал действия или нервный импульс, специфическая реакция, протекающая в виде возбуждающей волны и протекающей по всему нервному пути. Эта реакция является ответом на раздражитель. Главной задачей является передача данных от рецептора к нервной системе, а после этого она направляет эту информацию к нужным мышцам, железам и тканям. После прохождения импульса, поверхностная часть мембраны становится отрицательно заряженной, а внутренняя ее часть остается положительной. Таким образом, нервным импульсом называют последовательно передающиеся электрические изменения.

Возбуждающее действие и его распространение подвергается физико-химической природе. Энергия для проведения этого процесса образуется непосредственно в самом нерве. Происходит это из-за того, что прохождение импульса влечет образование тепла. Как только он прошел, начинается затихание или референтное состояние. В которою всего лишь долю секунды нерв не может проводить стимул. Скорость, с которой может поступать импульс колеблется в пределах от 3 м/с до 120 м/с.

Волокна, по которым проходит возбуждение, имеют специфическую оболочку. Грубо говоря, эта система напоминает электрический кабель. По своему составу оболочка может быть миелиновая и безмиелиновая. Самый главной составляющей миелиновой оболочки является – миелин, который играет роль диэлектрика.

Скорость прохождения импульса зависит от нескольких факторов, например, от толщины волокон, при чем оно толще, тем скорость развивается быстрее. Еще один фактором в повышении скорости проведения, является сам миелин. Но при этом он располагается не по всей поверхности, а участками, как бы нанизывается. Соответственно между этими участками есть те, которые остаются «голыми». По ним происходит утечка тока из аксона.

Аксоном называется отросток, с помощью него обеспечивается передача данных от одной клетки к остальным. Регулируется этот процесс с помощью синапса – непосредственной связи между нейронами или нейроном и клеткой. Еще существует, так называемое синаптическое пространство или щель. Когда поступает раздражительный импульс к нейрону, то в процессе реакции высвобождаются нейромедиаторы (молекулы химического состава). Они проходят через синаптическое отверстие, в итоге попадая на рецепторы нейрона или клетки, которой нужно донести данные. Для проведения нервного импульса необходимы ионы кальция, так как без этого не происходит высвобождение нейромедиатора.

Вегетативная система обеспечивается в основном безмиелиновыми тканями. По ним возбуждение распространяется постоянно и беспрерывно.

Принцип передачи основан на возникновении электрического поля, поэтому возникает потенциал, раздражающий мембрану соседнего участка и так по всему волокну.

При этом потенциал действия не передвигается, а появляется и исчезает в одном месте. Скорость передачи по таким волокнам составляет 1-2 м/с.

Законы проведения

В медицине присутствуют четыре основных закона:

  • Анатомо-физиологическая ценность. Проводится возбуждение только в том случае, если нет нарушения в целостности самого волокна. Если не обеспечивать единство, например, по причине ущемления, принятия наркотиков, то и проведение нервного импульса невозможно.
  • Изолированное проведение раздражения. Возбуждение может передаваться вдоль нервного волокна, никаким образом, не распространяясь на соседние.
  • Двустороннее проведение. Путь проведения импульса может быть только двух видов – центробежно и центростремительно. Но в действительности направление происходит в одном из вариантов.
  • Бездекрементное проведение. Импульсы не утихают, иными словами, проводятся без декремента.

Химия проведения импульса

Процесс раздражения так же контролируется ионами, в основном калием, натрием и некоторыми органическими соединениями. Концентрация расположения этих веществ разная, клетка заряжена внутри себя отрицательно, а на поверхности положительно. Этот процесс будет называться разностью потенциалов. При колебании отрицательного заряда, например, его уменьшении провоцируется разность потенциалов и этот процесс называется деполяризацией.

Раздражение нейрона влечет за собой открытие каналов натрия в месте раздражения. Это может способствовать вхождению положительно заряженных частиц во внутрь клетки. Соответственно отрицательный заряд снижается и происходит потенциал действия или происходит нервный импульс. После этого натриевые каналы снова прикрываются.

Часто встречается, что именно ослабление поляризации способствует открытию калиевых каналов, что провоцирует высвобождению положительно заряженных ионов калия. Этим действием уменьшается отрицательный заряд на поверхности клетки.

Потенциал покоя или электрохимическое состояние восстанавливается тогда, когда в работу включаются калий-натриевые насосы, с помощью которых ионы натрия выходят из клетки, а калия заходят в нее.

В результате можно сказать – при возобновлении электрохимических процессов и происходят импульсы, стремящиеся по волокнам.

Синапс - это межклеточный контакт, предназначенный для передачи нервного импульса между нейронами.

Для передачи импульса с одного нейрона на другой существуют межмембранные контакты – синапсы.

Дендриты могут быть длинными, а аксон – разветвленный, но один, разница – в направлении пути импульса: в дендрите – к телу нейрона, в аксоне – от тела.

Синапсы бывают 3х видов:

1. Электрические синапсы. Синаптическая щель очень узкая, сквозь нее проходят специальные молекулярные комплексы – коннексоны, с полостью внутри, через которую контактируют цитоплазмы двух нейронов. Электрические синапсы очень быстры и надежны, но с равной интенсивностью проводят импульс в обоих направлениях и их трудно регулировать. Используются в основном чтобы передавать нервный импульс на мышцы, например летательные мышцы насекомых.

2. Химические синапсы. Контактов между мембранами нет. В теле нейрона формируется нейротрансмиттер – нейромедиаторы в синаптических пузырьках. На пузырьках и на мембране есть специальные белки. Импульс при подходе к синапсу изменяет конформацию белков, и они приобретают высокое сродство друг к другу, пузырьки притягиваются к мембране, сливаются с ней и выплёскивают свое содержимое наружу в синаптическую щель. Нейромедиатор диффундирует в межклеточной жидкости, достигает постсинаптической мембраны и взаимодействует с ней, приводя к частичному изменению мембранного потенциала. Сигнал в этом случае имеет электрическую природу, а передача – химическую. Химический синапс срабатывает в одном направлении и подвергается мощной регуляции, то есть обладает высокой пластичностью, но при этом он медленный.

3. Смешанные синапсы. Такие синапсы включают оба рассмотренных принципа, но они мало изучены.

2 уровня восприятия:

Будет импульс сформирован или нет.

Если сигнала достаточно, то значение имеет частота формирования нервного импульса.

Единичной передачи может быть недостаточно, следующий нейрон будет возбуждаться только если сигналов много – принцип временной суммации импульсов – если импульсов много, то они суммируются. Прихода сигнала от одного импульса может быть недостаточно, следующий нейрон возбуждается только при одновременном получении импульса от 2х и более нейронов – это пространственная суммация. Иногда передача импульса ведет не к возбуждению следующего нейрона, а к торможению. Если есть два вида синапсов: ↓ и ┴, то нейрон реагирует только в том случае, если ↓ передает сигнал, а ┴ - нет. ┴-синапс позволяет выбрать наиболее оптимальный вариант реагирования. Полную горячую кастрюлю женщина медленно ставит на место, а не кидает.

В головном мозгу 95% синапсов – химические. Процесс передачи импульса через химический синапс гораздо медленнее, чем передача импульса по нейрону, значит выгодно, чтобы синапсов было как можно меньше. Отсутствие специализации нейронов привело бы к автоматизации реакций. Регуляторная функция нервной системы является вторичной, так как изначально нервная система была предназначена для реакции организма на внешнюю среду. На данный момент подробно изучены только хим. синапсы. Поэтому рассмотрим передачу импульса на их примере. Помним, что хим. синапсы передают импульс с помощью нейромедиаторов. Они нах-ся в пресинаптической мембране в небольших синаптических пузырьках. Эти пузырьки накапливаются здесь во время покоя, а еще они окружены мембраной, которая имеет особый белковый комплекс, чувствительный к конц-ции ионов Са + . При возникновении сигнала кл. обогащается ионами Ca 2+ , и пузырек приобретает некое сродство к мембране кл. Сливается с ней, а нейромедиаторы выходит в син. щель. Там он взаимод. с белками постсинаптической мембраны, которые запускают соответствующие каскадные процессы, а нейромедиаторы возвращаются обратно в пресинаптическую мембрану.