Старт в науке. Метод математической индукции и его применение к решению задач Разновидности метода математической индукции

Вступление

Основная часть

1. Полная и неполная индукция

2. Принцип математической индукции

3. Метод математической индукции

4. Решение примеров

5. Равенства

6. Деление чисел

7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А(n ), зависящее от натурального числа n , истинно для n =1 и из того, что оно истинно для n=k (где k -любое натуральное число), следует, что оно истинно и для следующего числа n=k+1 , то предположение А(n ) истинно для любого натурального числа n .

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом. Если предложение А(n ) истинно при n=p и если А(k ) Þ А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

ПРИМЕР 1

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

ПРИМЕР 2

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

ПРИМЕР 3

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-

А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k+1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

ПРИМЕР 4

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6.

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

ПРИМЕР 5

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k


Одним из самых важных методов математических доказательств по праву является метод математической индукции . Подавляющее большинство формул, относящихся ко всем натуральным числам n , могут быть доказаны методом математической индукции (к примеру, формула суммы n первых членов арифметической прогрессии , формула бинома Ньютона и т.п.).

В этой статье сначала остановимся на основных понятиях, далее рассмотрим сам метод математической индукции и разберем примеры его применения при доказательстве равенств и неравенств.

Навигация по странице.

Индукция и дедукция.

Индукцией называют переход от частных утверждений к общим. Напротив, переход от общих утверждений к частным называется дедукцией.

Пример частного утверждения: 254 делится на 2 без остатка.

Из этого частного утверждения можно сформулировать массу более общих утверждений, причем как истинных так и ложных. К примеру, более общее утверждение, что все целые числа, оканчивающиеся четверкой, делятся на 2 без остатка, является истинным, а утверждение, что все трехзначные числа делятся на 2 без остатка, является ложным.

Таким образом, индукция позволяет получить множество общих утверждений на основе известных или очевидных фактов. А метод математической индукции призван определить справедливость полученных утверждений.

В качестве примера, рассмотрим числовую последовательность: , n – произвольное натуральное число. Тогда последовательность сумм первых n элементов этой последовательности будет следующая

Исходя из этого факта, по индукции можно утверждать, что .

Доказательство этой формулы приведем .

Метод математической индукции.

В основе метода математической индукции лежит принцип математической индукции .

Он заключается в следующем: некоторое утверждение справедливо для всякого натурального n , если

  1. оно справедливо для n = 1 и
  2. из справедливости утверждения для какого-либо произвольного натурального n = k следует его справедливость для n = k+1 .

То есть, доказательство по методу математической индукции проводится в три этапа:

  1. во-первых, проверятся справедливость утверждения для любого натурального числа n (обычно проверку делают для n = 1 );
  2. во-вторых, предполагается справедливость утверждения при любом натуральном n=k ;
  3. в-третьих, доказывается справедливость утверждения для числа n=k+1 , отталкиваясь от предположения второго пункта.

Примеры доказательств уравнений и неравенств методом математической индукции.

Вернемся к предыдущему примеру и докажем формулу .

Доказательство.

Метод математической индукции предполагает доказательство в три пункта.

Таким образом, выполнены все три шага метода математической индукции и тем самым доказано наше предположение о формуле .

Давайте рассмотрим тригонометрическую задачу.

Пример.

Докажите тождество .

Решение.

Во-первых, проверяем справедливость равенства при n = 1 . Для этого нам понадобятся основные формулы тригонометрии.

То есть, равенство верно для n = 1 .

Во-вторых, предположим, что равенство верно для n = k , то есть справедливо тождество

В-третьих, переходим к доказательству равенства для n = k+1 , основываясь на втором пункте.

Так как по формуле из тригонометрии

то

Доказательство равенства из третьего пункта завершено, следовательно, исходное тождество доказано методом математической индукции.

Может быть доказана методом математической индукции.

Пример доказательства неравенства методом математической индукции можете посмотреть в разделе метод наименьших квадратов при выводе формул для нахождения коэффициентов аппроксимации.

Список литературы.

  • Соминский И.С., Головина Л.И., Яглом И.М. О математической индукции.

Метод доказательства, о котором будет идти речь в данном пункте, основан на одной из аксиом натурального ряда.

Аксиома индукции. Пусть дано предложение, зависящее от переменной п, вместо которой можно подставлять любые натуральные числа. Обозначим его А(п). Пусть также предложение А верно для числа 1 и из того, что А верно для числа к , следует, что А верно для числа к+ 1. Тогда предложение А верно для всех натуральных значений п.

Символическая запись аксиомы:

Здесь пик- переменные по множеству натуральных чисел. Из аксиомы индукции получается следующее правило вывода:

Итак, для того чтобы доказать истинность предложения А, можно вначале доказать два утверждения: истинность высказывания А( 1), а также следствие А(к) => А(к+ 1).

Учитывая сказанное выше, опишем сущность метода

математической индукции.

Пусть требуется доказать, что предложение А(п) верно для всех натуральных п. Доказательство разбивается на два этапа.

  • 1- й этап. База индукции. Берем в качестве значения п число 1 и проверяем, что А( 1) есть истинное высказывание.
  • 2- й этап. Индуктивный переход. Доказываем, что при любом натуральном числе к верна импликация: если А{к ), то А(к+ 1).

Индуктивный переход начинается словами: «Возьмем произвольное натуральное число к, такое, что А(к)», или «Пусть для натурального числа к верно А(к)». Вместо слова «пусть» часто говорят «предположим, что...».

После этих слов буква к обозначает некий фиксированный объект, для которого выполняется соотношение А{к). Далее из А(к) выводим следствия, то есть строим цепочку предложений А(к) 9 Р , Pi, ..., Р„ = А(к+ 1), где каждое предложение Р, является истинным высказыванием или следствием предыдущих предложений. Последнее предложение Р„ должно совпадать с А(к+ 1). Отсюда заключаем: из А{к) следует А(к+ ).

Выполнение индуктивного перехода можно расчленить на два действия:

  • 1) Индуктивное предположение. Здесь мы предполагаем, что А к переменной н.
  • 2) На основе предположения доказываем, что А верно для числа?+1.

Пример 5.5.1. Докажем, что число п+п является четным при всех натуральных п.

Здесь А(п) = «п 2 +п - четное число». Требуется доказать, что А - тождественно истинный предикат. Применим метод математической индукции.

База индукции. Возьмем л=1. Подставим в выражение п +//, получим n 2 +n = I 2 + 1 = 2 - четное число, то есть /1(1) - истинное высказывание.

Сформулируем индуктивное предположение А{к) = «Число к 2 +к - четное». Можно сказать так: «Возьмем произвольное натуральное число к такое, что к 2 +к есть четное число».

Выведем отсюда утверждение А(кА-) = «Число (к+ 1) 2 +(?+1) - четное».

По свойствам операций выполним преобразования:

Первое слагаемое полученной суммы четно по предположению, второе четно по определению (так как имеет вид 2п). Значит, сумма есть четное число. Предложение А(к+ 1) доказано.

По методу математической индукции делаем вывод: предложение А(п) верно для всех натуральных п.

Конечно, нет необходимости каждый раз вводить обозначение А(п). Однако все же рекомендуется отдельной строкой формулировать индуктивное предположение и то, что требуется из него вывести.

Заметим, что утверждение из примера 5.5.1 можно доказать без использования метода математической индукции. Для этого достаточно рассмотреть два случая: когда п четно и когда п нечетно.

Многие задачи на делимость решаются методом математической индукции. Рассмотрим более сложный пример.

Пример 5.5.2. Докажем, что число 15 2и_| +1 делится на 8 при всех натуральных п.

Бача индукции. Возьмем /1=1. Имеем: число 15 2|_| +1 = 15+1 = 16 делится на число 8.

, что для некоторого

натурального числа к число 15 2 * ’+1 делится на 8.

Докажем , что тогда число а = 15 2(ЖН +1 делится 8.

Преобразуем число а:

По предположению, число 15 2А1 +1 делится на 8, значит, все первое слагаемое делится на 8. Второе слагаемое 224=8-28 также делится на 8. Таким образом, число а как разность двух чисел, кратных 8, делится на 8. Индуктивный переход обоснован.

На основе метода математической индукции заключаем, что для всех натуральных п число 15 2 " -1 -*-1 делится на 8.

Сделаем некоторые замечания по решенной задаче.

Доказанное утверждение можно сформулировать немного по-другому: «Число 15”"+1 делится на 8 при любых нечетных натуральных /и».

Во-вторых, из доказанного общего утверждения можно сделать частный вывод, доказательство которого может быть дано как отдельная задача: число 15 2015 +1 делится на 8. Поэтому иногда бывает полезно обобщить задачу, обозначив какое-то конкретное значение буквой, а затем применить метод математической индукции.

В самом общем понимании термин «индукция» означает, что на основе частных примеров делают общие выводы. Например, рассмотрев некоторые примеры сумм четных чисел 2+4=6, 2+8=10, 4+6=10, 8+12=20, 16+22=38, делаем вывод о том, что сумма любых двух четных чисел есть четное число.

В общем случае вот такая индукция может привести к неверным выводам. Приведем пример подобного неправильного рассуждения.

Пример 5.5.3. Рассмотрим число а = /г+я+41 при натуральном /?.

Найдем значения а при некоторых значениях п.

Пусть п= I. Тогда а = 43 - простое число.

Пусть /7=2. Тогда а = 4+2+41 = 47 - простое.

Пусть л=3. Тогда а = 9+3+41 = 53 - простое.

Пусть /7=4. Тогда а = 16+4+41 = 61 - простое.

Возьмите в качестве значений п следующие за четверкой числа, например 5, 6, 7, и убедитесь, что число а будет простым.

Делаем вывод: «При всех натуральных /? число а будет простым».

В результате получилось ложное высказывание. Приведем контрпример: /7=41. Убедитесь, что при данном п число а будет составным.

Термин «математическая индукция» несет в себе более узкий смысл, так как применение этого метода позволяет получить всегда верное заключение.

Пример 5.5.4. Получим на основе индуктивных рассуждений формулу общего члена арифметической прогрессии. Напомним, что арифметической профессией называется числовая последовательность, каждый член которой отличается от предыдущего на одно и то же число, называемое разностью прогрессии. Для того чтобы однозначно задать арифметическую профессию, нужно указать ее первый член а и разность d.

Итак, по определению а п+ = а п + d, при п> 1.

В школьном курсе математики, как правило, формула общего члена арифметической профессии устанавливается на основе частных примеров, то есть именно по индукции.

Если /7=1, ТО С 7| = Я|, ТО есть Я| = tf|+df(l -1).

Если /7=2, то я 2 = a+d, то есть а = Я|+*/(2-1).

Если /7=3, то я 3 = я 2 + = (a+d)+d = a+2d, то есть я 3 = Я|+(3-1).

Если /7=4, то я 4 = я 3 +*/ = (a+2d)+d = Я1+3 и т.д.

Приведенные частные примеры позволяют выдвинуть гипотезу: формула общего члена имеет вид а„ = a+(n-)d для всех /7>1.

Докажем эту формулу методом математической индукции.

База индукции проверена в предыдущих рассуждениях.

Пусть к - такой номер, при котором я* - a+{k-)d (индуктивное предположение ).

Докажем , что я*+! = a+((k+)-)d, то есть я*+1 = a x +kd.

По определению я*+1 = аь+d. а к = я | +(к -1 )d , значит, ац+ = я i +(А:-1)^/+с/ = я | +(А-1+1 )d = я i +kd , что и требовалось доказать (для обоснования индуктивного перехода).

Теперь формула я„ = a+{n-)d доказана для любого натурального номера /;.

Пусть дана некоторая последовательность я ь я 2 , я,„ ... (не

обязательно арифметическая или геометрическая прогрессия). Часто возникают задачи, где требуется суммировать первые п членов этой последовательности, то есть задать сумму Я|+я 2 +...+я и формулой, которая позволяет находить значения этой суммы, не вычисляя члены последовательности.

Пример 5.5.5. Докажем, что сумма первых п натуральных чисел равна

/?(/7 + 1)

Обозначим сумму 1+2+...+/7 через S n . Найдем значения S n для некоторых /7.

Заметим: для того чтобы найти сумму S 4 , можно воспользоваться вычисленным ранее значением 5 3 , так как 5 4 = 5 3 +4.

п(п +1)

Если подставить рассмотренные значения /? в терм ---то

получим, соответственно, те же суммы 1, 3, 6, 10. Эти наблюдения

. _ п(п + 1)

наталкивают на мысль, что формулу S „=--- можно использовать при

любом //. Докажем эту гипотезу методом математической индукции.

База индукции проверена. Выполним индуктивный переход.

Предположим , что формула верна для некоторого натурального числа

, к(к + 1)

к, то сеть сумма первых к натуральных чисел равна ----.

Докажем , что сумма первых (?+1) натуральных чисел равна

  • (* + !)(* + 2)

Выразим?*+1 через S k . Для этого в сумме S*+i сгруппируем первые к слагаемых, а последнее слагаемое запишем отдельно:

По индуктивному предположению S k = Значит, чтобы найти

сумму первых (?+1) натуральных чисел, достаточно к уже вычисленной

. „ к(к + 1) _ .. ..

сумме первых к чисел, равной ---, прибавить одно слагаемое (к+1).

Индуктивный переход обоснован. Тем самым выдвинутая вначале гипотеза доказана.

Мы привели доказательство формулы S n = п ^ п+ методом

математической индукции. Конечно, есть и другие доказательства. Например, можно записать сумму S, в порядке возрастания слагаемых, а затем в порядке убывания слагаемых:

Сумма слагаемых, стоящих в одном столбце, постоянна (в одной сумме каждое следующее слагаемое уменьшается на 1, а в другой увеличивается на 1) и равна (/г+1). Поэтому, сложив полученные суммы, будем иметь п слагаемых, равных (и+1). Итак, удвоенная сумма S„ равна п(п+ 1).

Доказанная формула может быть получена как частный случай формулы суммы первых п членов арифметической прогрессии.

Вернемся к методу математической индукции. Отметим, что первый этап метода математической индукции (база индукции) всегда необходим. Отсутствие этого этапа может привести к неверному выводу.

Пример 5.5.6. «Докажем» предложение: «Число 7"+1 делится на 3 при любом натуральном я».

«Предположим, что при некотором натуральном значении к число 7*+1 делится на 3. Докажем, что число 7 ж +1 делится на 3. Выполним преобразования:

Число 6 очевидно делится на 3. Число 1 к + делится на 3 по индуктивному предположению, значит, число 7-(7* + 1) также делится на 3. Поэтому разность чисел, делящихся на 3, будет также делиться на 3.

Предложение доказано».

Доказательство исходного предложения неверно, несмотря на то что индуктивный переход выполнен правильно. Действительно, при п= I имеем число 8, при п=2 - число 50, ..., и ни одно из этих чисел нс делится на 3.

Сделаем важное замечание об обозначении натурального числа при выполнении индуктивного перехода. При формулировке предложения А(п) буквой п мы обозначали переменную, вместо которой можно подставлять любые натуральные числа. При формулировке индуктивного предположения мы обозначали значение переменной буквой к. Однако очень часто вместо новой буквы к используют ту же самую букву, которой обозначается переменная. Это никак не влияет на структуру рассуждений при выполнении индуктивного перехода.

Рассмотрим еще несколько примеров задач, для решения которых можно применить метод математической индукции.

Пример 5.5.7. Найдем значение суммы

В задании переменная п не фигурирует. Однако рассмотрим последовательность слагаемых:

Обозначим S, = а+а 2 +...+а„. Найдем S „ при некоторых п. Если /1= 1, то S, =а, = -.

Если п= 2. то S, = а, + а? = - + - = - = -.

Если /?=3, то S-, = a,+a 7 + я, = - + - + - = - + - = - = -.

3 1 - 3 2 6 12 3 12 12 4

Можете самостоятельно вычислить значения S„ при /7 = 4; 5. Возникает

естественное предположение: S n = -- при любом натуральном /7. Докажем

это методом математической индукции.

База индукции проверена выше.

Выполним индуктивный переход , обозначая произвольно взятое

значение переменной п этой же буквой, то есть докажем, что из равенства

0 /7 _ /7 +1

S n =-следует равенство S , =-.

/7+1 /7 + 2

Предположим, что верно равенство S = - П -.

Выделим в сумме S„+ первые п слагаемых:

Применив индуктивное предположение, получим:

Сокращая дробь на (/7+1), будем иметь равенство S n +1 - , Л

Индуктивный переход обоснован.

Тем самым доказано, что сумма первых п слагаемых

  • 1 1 1 /7 ^
  • - +-+...+- равна -. Теперь возвратимся к первоначальной
  • 1-2 2-3 /?(// +1) /7 + 1

задаче. Для ее решения достаточно взять в качестве значения п число 99.

Тогда сумма -!- + -!- + -!- + ...+ --- будет равна числу 0,99.

1-2 2-3 3-4 99100

Постарайтесь вычислить данную сумму другим способом.

Пример 5.5.8. Докажем, что производная суммы любого конечного числа дифференцируемых функций равна сумме производных этих функций.

Пусть переменная /? обозначает количество данных функций. В случае, когда дана только одна функция, под суммой понимается именно эта функция. Поэтому если /7=1, то утверждение очевидно истинно:/" = /".

Предположим , что утверждение справедливо для набора из п функций (здесь снова вместо буквы к взята буква п), то есть производная суммы п функций равна сумме производных.

Докажем , что производная суммы (я+1) функций равна сумме производных. Возьмем произвольный набор, состоящий из п+ дифференцируемой функции: /1,/2, . Представим сумму этих функций

в виде g+f„+ 1, где g=f +/г + ... +/ t - сумма п функций. По индуктивному предположению производная функции g равна сумме производных: g" = ft +ft + ... +ft. Поэтому имеет место следующая цепочка равенств:

Индуктивный переход выполнен.

Таким образом, исходное предложение доказано для любого конечного числа функций.

В ряде случаев требуется доказать истинность предложения А(п) для всех натуральных я, начиная с некоторого значения с. Доказательство методом математической индукции в таких случаях проводится по следующей схеме.

База индукции. Доказываем, что предложение А верно для значения п, равного с.

Индуктивный переход. 1) Предполагаем, что предложение А верно для некоторого значения к переменной /?, которое больше либо равно с.

2) Доказываем, что предложение А истинно для значения /?, равного

Снова заметим, что вместо буквы к часто оставляют обозначение переменной п. В этом случае индуктивный переход начинают словами: «Предположим, что для некоторого значения п>с верно А(п). Докажем, что тогда верно А(п+ 1)».

Пример 5.5.9. Докажем, что при всех натуральных п> 5 верно неравенство 2” > и 2 .

База индукции. Пусть п= 5. Тогда 2 5 =32, 5 2 =25. Неравенство 32>25 истинно.

Индуктивный переход. Предположим , что имеет место неравенство 2 П >п 2 для некоторого натурального числа п> 5. Докажем , что тогда 2" +| > (п+1) 2 .

По свойствам степеней 2” +| = 2-2". Так как 2">я 2 (по индуктивному предположению), то 2-2" > 2я 2 (I).

Обоснуем, что 2п 2 больше (я+1) 2 . Это можно сделать разными способами. Достаточно решить квадратное неравенство 2х 2 >(х+) 2 во множестве действительных чисел и увидеть, что все натуральные числа, большие либо равные 5, являются его решениями.

Мы поступим следующим образом. Найдем разность чисел 2п 2 и (я+1) 2:

Так как и > 5, то я+1 > 6, значит, (я+1) 2 > 36. Поэтому разность больше 0. Итак, 2я 2 > (я+1) 2 (2).

По свойствам неравенств из (I) и (2) следует, что 2*2" > (я+1) 2 , что и требовалось доказать для обоснования индуктивного перехода.

На основе метода математической индукции заключаем, что неравенство 2" > я 2 истинно для любых натуральных чисел я.

Рассмотрим еще одну форму метода математической индукции. Отличие заключается в индуктивном переходе. Для его осуществления требуется выполнить два шага:

  • 1) предположить, что предложение А(п) верно при всех значениях переменной я, меньших некоторого числар;
  • 2) из выдвинутого предположения вывести, что предложение А(п) справедливо и для числар.

Таким образом, индуктивный переход требует доказательства следствия: [(Уи?) А{п)] => А(р). Заметим, что следствие можно переписать в виде: [(Уп^р) А(п)] => А(р+ 1).

В первоначальной формулировке метода математической индукции при доказательстве предложения А(р) мы опирались только на «предыдущее» предложение А(р- 1). Данная здесь формулировка метода позволяет выводить А(р), считая, что все предложения А(п), где я меньшер , истинны.

Пример 5.5.10. Докажем теорему: «Сумма внутренних углов любого я-угольника равна 180°(я-2)».

Для выпуклого многоугольника теорему легко доказать, если разбить его диагоналями, проведенными из одной вершины, на треугольники. Однако для невыпуклого многоугольника такая процедура может быть невозможна.

Докажем теорему для произвольного многоугольника методом математической индукции. Будем считать известным следующее утверждение, которое, строго говоря, требует отдельного доказательства: «В любом //-угольнике существует диагональ, лежащая целиком во внугренней его части».

Вместо переменной // можно подставлять любые натуральные числа, которые больше либо равны 3. Для п=Ъ теорема справедлива, так как в треугольнике сумма углов равна 180°.

Возьмем некоторый /7-угольник (р> 4) и предположим, что сумма углов любого //-угольника, где // р, равна 180°(//-2). Докажем, что сумма углов //-угольника равна 180°(//-2).

Проведем диагональ //-угольника, лежащую внутри него. Она разобьет //-угольник на два многоугольника. Пусть один из них имеет к сторон, другой - к 2 сторон. Тогда к+к 2 -2 = р, так как полученные многоугольники имеют общей стороной проведенную диагональ, не являющуюся стороной исходного //-угольника.

Оба числа к и к 2 меньше //. Применим к полученным многоугольникам индуктивное предположение: сумма углов А]-угольника равна 180°-(?i-2), а сумма углов? 2 -угольника равна 180°-(Аг 2 -2). Тогда сумма углов //-угольника будет равна сумме этих чисел:

180°*(Аг|-2)-н 180°(Аг2-2) = 180 о (Аг,-ьАг 2 -2-2) = 180°-(//-2).

Индуктивный переход обоснован. На основе метода математической индукции теорема доказана для любого //-угольника (//>3).

Истинное знание во все времена основывалось на установлении закономерности и доказательстве её правдивости в определенных обстоятельствах. За столь длительный срок существования логических рассуждений были даны формулировки правил, а Аристотель даже составил список «правильных рассуждений». Исторически принято делить все умозаключения на два типа - от конкретного к множественному (индукция) и наоборот (дедукция). Следует отметить, что типы доказательств от частного к общему и от общего к частному существуют только во взаимосвязи и не могут быть взаимозаменяемы.

Индукция в математике

Термин "индукция" (induction) имеет латинские корни и дословно переводится как «наведение». При пристальном изучении можно выделить структуру слова, а именно латинскую приставку - in- (обозначает направленное действие внутрь или нахождение внутри) и -duction - введение. Стоит отметить, что существует два вида - полная и неполная индукции. Полную форму характеризуют выводы, сделанные на основании изучения всех предметов некоторого класса.

Неполную - выводы, применяемые ко всем предметам класса, но сделанные на основании изучения только некоторых единиц.

Полная математическая индукция - умозаключение, базирующееся на общем выводе обо всем классе каких-либо предметов, функционально связанных отношениями натурального ряда чисел на основании знания этой функциональной связи. При этом процесс доказательства проходит в три этапа:

  • на первом доказывается правильность положения математической индукции. Пример: f = 1, индукции;
  • следующий этап строится на предположении о правомерности положения для всех натуральных чисел. То есть, f=h, это предположение индукции;
  • на третьем этапе доказывается справедливость положения для числа f=h+1, на основании верности положения предыдущего пункта - это индукционный переход, или шаг математической индукции. Примером может служить так называемый если падает первая косточка в ряду (базис), то упадут все косточки в ряду (переход).

И в шутку, и всерьез

Для простоты восприятия примеры решения методом математической индукции обличают в форму задач-шуток. Таковой является задача «Вежливая очередь»:

  • Правила поведения запрещают мужчине занимать очередь перед женщиной (в такой ситуации ее пропускают вперед). Исходя из этого утверждения, если крайний в очереди - мужчина, то и все остальные - мужчины.

Ярким примером метода математической индукции является задача «Безразмерный рейс»:

  • Требуется доказать, что в маршрутку помещается любая численность людей. Правдиво утверждение, что один человек может разместиться внутри транспорта без затруднений (базис). Но как бы ни была заполнена маршрутка, 1 пассажир в нее всегда поместится (шаг индукции).

Знакомые окружности

Примеры решения методом математической индукции задач и уравнений встречаются довольно часто. Как иллюстрацию такого подхода, можно рассмотреть следующую задачу.

Условие : на плоскости размещено h окружностей. Требуется доказать, что при любом расположении фигур образуемая ими карта может быть правильно раскрашена двумя красками.

Решение : при h=1 истинность утверждения очевидна, поэтому доказательство будет строиться для количества окружностей h+1.

Примем допущение, что утверждение достоверно для любой карты, а на плоскости задано h+1 окружностей. Удалив из общего количества одну из окружностей, можно получить правильно раскрашенную двумя красками (черной и белой) карту.

При восстановлении удаленной окружности меняется цвет каждой области на противоположный (в указанном случае внутри окружности). Получается карта, правильно раскрашенная двумя цветами, что и требовалось доказать.

Примеры с натуральными числами

Ниже наглядно показано применение метода математической индукции.

Примеры решения:

Доказать, что при любом h правильным будет равенство:

1 2 +2 2 +3 2 +…+h 2 =h(h+1)(2h+1)/6.

1. Пусть h=1, значит:

R 1 =1 2 =1(1+1)(2+1)/6=1

Из этого следует, что при h=1 утверждение правильно.

2. При допущении, что h=d, получается уравнение:

R 1 =d 2 =d(d+1)(2d+1)/6=1

3. При допущении, что h=d+1, получается:

R d+1 =(d+1) (d+2) (2d+3)/6

R d+1 = 1 2 +2 2 +3 2 +…+d 2 +(d+1) 2 = d(d+1)(2d+1)/6+ (d+1) 2 =(d(d+1)(2d+1)+6(d+1) 2)/6=(d+1)(d(2d+1)+6(k+1))/6=

(d+1)(2d 2 +7d+6)/6=(d+1)(2(d+3/2)(d+2))/6=(d+1)(d+2)(2d+3)/6.

Таким образом, справедливость равенства при h=d+1 доказана, поэтому утверждение верно для любого натурального числа, что и показано в примере решения математической индукцией.

Задача

Условие : требуется доказательство того, что при любом значении h выражение 7 h -1 делимо на 6 без остатка.

Решение :

1. Допустим, h=1, в этом случае:

R 1 =7 1 -1=6 (т.е. делится на 6 без остатка)

Следовательно, при h=1 утверждение является справедливым;

2. Пусть h=d и 7 d -1 делится на 6 без остатка;

3. Доказательством справедливости утверждения для h=d+1 является формула:

R d +1 =7 d +1 -1=7∙7 d -7+6=7(7 d -1)+6

В данном случае первое слагаемое делится на 6 по допущению первого пункта, а второе слагаемое равно 6. Утверждение о том, что 7 h -1 делимо на 6 без остатка при любом натуральном h - справедливо.

Ошибочность суждений

Часто в доказательствах используют неверные рассуждения, в силу неточности используемых логических построений. В основном это происходит при нарушении структуры и логики доказательства. Примером неверного рассуждения может служить такая иллюстрация.

Задача

Условие : требуется доказательство того, что любая куча камней - не является кучкой.

Решение :

1. Допустим, h=1, в этом случае в кучке 1 камень и утверждение верно (базис);

2. Пусть при h=d верно, что куча камней - не является кучкой (предположение);

3. Пусть h=d+1, из чего следует, что при добавлении еще одного камня множество не будет являться кучкой. Напрашивается вывод, что предположение справедливо при всех натуральных h.

Ошибка заключается в том, что нет определения, какое количество камней образует кучку. Такое упущение называется поспешным обобщением в методе математической индукции. Пример это ясно показывает.

Индукция и законы логики

Исторически сложилось так, что всегда "шагают рука об руку". Такие научные дисциплины как логика, философия описывают их в виде противоположностей.

С точки зрения закона логики в индуктивных определениях просматривается опора на факты, а правдивость посылок не определяет правильность получившегося утверждения. Зачастую получаются умозаключения с определенной долей вероятности и правдоподобности, которые, естественно, должны быть проверены и подтверждены дополнительными исследованиями. Примером индукции в логике может быть утверждение:

В Эстонии - засуха, в Латвии - засуха, в Литве - засуха.

Эстония, Латвия и Литва - прибалтийские государства. Во всех прибалтийских государствах засуха.

Из примера можно заключить, что новую информацию или истину нельзя получить при помощи метода индукции. Все, на что можно рассчитывать - это некоторая возможная правдивость выводов. Причем, истинность посылок не гарантирует таких же заключений. Однако данный факт не обозначает, что индукция прозябает на задворках дедукции: огромное множество положений и научных законов обосновываются при помощи метода индукции. Примером может служить та же математика, биология и другие науки. Связано это по большей части с методом полной индукции, но в некоторых случаях применима и частичная.

Почтенный возраст индукции позволил ей проникнуть практически во все сферы деятельности человека - это и наука, и экономика, и житейские умозаключения.

Индукция в научной среде

Метод индукции требует щепетильного отношения, поскольку слишком многое зависит от количества изученных частностей целого: чем большее число изучено, тем достовернее результат. Исходя из этой особенности, научные законы, полученные методом индукции, достаточно долго проверяются на уровне вероятностных предположений для вычленения и изучения всех возможных структурных элементов, связей и воздействий.

В науке индукционное заключение основывается на значимых признаках, с исключением случайных положений. Данный факт важен в связи со спецификой научного познания. Это хорошо видно на примерах индукции в науке.

Различают два вида индукции в научном мире (в связи со способом изучения):

  1. индукция-отбор (или селекция);
  2. индукция - исключение (элиминация).

Первый вид отличается методичным (скрупулезным) отбором образцов класса (подклассов) из разных его областей.

Пример индукции этого вида следующий: серебро (или соли серебра) очищает воду. Вывод основывается на многолетних наблюдениях (своеобразный отбор подтверждений и опровержений - селекция).

Второй вид индукции строится на выводах, устанавливающих причинные связи и исключающих обстоятельства, не отвечающие ее свойствам, а именно всеобщность, соблюдение временной последовательности, необходимость и однозначность.

Индукция и дедукция с позиции философии

Если взглянуть на историческую ретроспективу, то термин "индукция" впервые был упомянут Сократом. Аристотель описывал примеры индукции в философии в более приближенном терминологическом словаре, но вопрос неполной индукции остается открытым. После гонений на аристотелевский силлогизм индуктивный метод стал признаваться плодотворным и единственно возможным в естествознании. Отцом индукции как самостоятельного особого метода считают Бэкона, однако ему не удалось отделить, как того требовали современники, индукцию от дедуктивного метода.

Дальнейшей разработкой индукции занимался Дж. Милль, который рассматривал индукционную теорию с позиции четырех основных методов: согласия, различия, остатков и соответствующих изменений. Неудивительно, что на сегодняшний день перечисленные методы при их детальном рассмотрении являются дедуктивными.

Осознание несостоятельности теорий Бэкона и Милля привело ученых к исследованию вероятностной основы индукции. Однако и здесь не обошлось без крайностей: были предприняты попытки свести индукцию к теории вероятности со всеми вытекающими последствиями.

Вотум доверия индукция получает при практическом применении в определенных предметных областях и благодаря метрической точности индуктивной основы. Примером индукции и дедукции в философии можно считать Закон всемирного тяготения. На дату открытия закона Ньютону удалось проверить его с точностью в 4 процента. А при проверке спустя более двухсот лет правильность была подтверждена с точностью до 0,0001 процента, хотя проверка велась все теми же индуктивными обобщениями.

Современная философия больше внимания уделяет дедукции, что продиктовано логичным желанием вывести из уже известного новые знания (или истины), не обращаясь к опыту, интуиции, а оперируя «чистыми» рассуждениями. При обращении к истинным посылкам в дедуктивном методе во всех случаях на выходе получается истинное утверждение.

Эта очень важная характеристика не должна затмевать ценность индуктивного метода. Поскольку индукция, опираясь на достижения опыта, становится и средством его обработки (включая обобщение и систематизацию).

Применение индукции в экономике

Индукция и дедукция давно используются как методы исследования экономики и прогнозирования ее развития.

Спектр использования метода индукции достаточно широк: изучение выполнения прогнозных показателей (прибыли, амортизация и т. д.) и общая оценка состояния предприятия; формирование эффективной политики продвижения предприятия на основе фактов и их взаимосвязей.

Тот же метод индукции применен в «картах Шухарта», где при предположении о разделении процессов на управляемые и неуправляемые утверждается, что рамки управляемого процесса малоподвижны.

Следует отметить, что научные законы обосновываются и подтверждаются при помощи метода индукции, а поскольку экономика является наукой, часто пользующейся математическим анализом, теорией рисков и статистическими данными, то совершенно неудивительно присутствие индукции в списке основных методов.

Примером индукции и дедукции в экономике может служить следующая ситуация. Увеличение цены на продукты питания (из потребительской корзины) и товары первой необходимости подталкивают потребителя к мысли о возникающей дороговизне в государстве (индукция). Вместе с тем, из факта дороговизны при помощи математических методов можно вывести показатели роста цен на отдельные товары или категории товаров (дедукция).

Чаще всего обращается к методу индукции управляющий персонал, руководители, экономисты. Для того чтобы можно было с достаточной правдивостью прогнозировать развитие предприятия, поведение рынка, последствия конкуренции, необходим индукционно-дедуктивный подход к анализу и обработке информации.

Наглядный пример индукции в экономике, относящийся к ошибочным суждениям:

  • прибыль компании сократилась на 30%;
    конкурирующая компания расширила линейку продукции;
    больше ничего не изменилось;
  • производственная политика конкурирующей компании стала причиной сокращения прибыли на 30%;
  • следовательно, требуется внедрить такую же производственную политику.

Пример является красочной иллюстрацией того, как неумелое использование метода индукции способствует разорению предприятия.

Дедукция и индукция в психологии

Поскольку существует метод, то, по логике вещей, имеет место и должным образом организованное мышление (для использования метода). Психология как наука, изучающая психические процессы, их формирование, развитие, взаимосвязи, взаимодействия, уделяет внимание «дедуктивному» мышлению, как одной из форм проявления дедукции и индукции. К сожалению, на страницах по психологии в сети Интернет практически отсутствует обоснование целостности дедуктивно-индуктивного метода. Хотя профессиональные психологи чаще сталкиваются с проявлениями индукции, а точнее - ошибочными умозаключениями.

Примером индукции в психологии, как иллюстрации ошибочных суждений, может служить высказывание: моя мать - обманывает, следовательно, все женщины - обманщицы. Еще больше можно почерпнуть «ошибочных» примеров индукции из жизни:

  • учащийся ни на что не способен, если получил двойку по математике;
  • он - дурак;
  • он - умный;
  • я могу все;

И многие другие оценочные суждения, выведенные на абсолютно случайных и, порой, малозначительных посылах.

Следует отметить: когда ошибочность суждений человека доходит до абсурда, появляется фронт работы для психотерапевта. Один из примеров индукции на приеме у специалиста:

«Пациент абсолютно уверен в том, что красный цвет несет для него только опасность в любых проявлениях. Как следствие, человек исключил из своей жизни данную цветовую гамму - насколько это возможно. В домашней обстановке возможностей для комфортного проживания много. Можно отказаться от всех предметов красного цвета или заменить их на аналоги, выполненные в другой цветовой гамме. Но в общественных местах, на работе, в магазине - невозможно. Попадая в ситуацию стресса, пациент каждый раз испытывает «прилив» абсолютно разных эмоциональных состояний, что может представлять опасность для окружающих».

Этот пример индукции, причем неосознанной, называется «фиксированные идеи». В случае если такое происходит с психически здоровым человеком, можно говорить о недостатке организованности мыслительной деятельности. Способом избавления от навязчивых состояний может стать элементарное развитие дедуктивного мышления. В иных случаях с такими пациентами работают психиатры.

Приведенные примеры индукции свидетельствуют о том, что «незнание закона не освобождает от последствий (ошибочных суждений)».

Психологи, работая над темой дедуктивного мышления, составили список рекомендаций, призванный помочь людям освоить данный метод.

Первым пунктом значится решение задач. Как можно было убедиться, та форма индукции, которая употребляется в математике, может считаться «классической», и использование этого метода способствует «дисциплинированности» ума.

Следующим условием развития дедуктивного мышления является расширение кругозора (кто ясно мыслит, тот ясно излагает). Данная рекомендация направляет «страждущих» в скарбницы наук и информации (библиотеки, сайты, образовательные инициативы, путешествия и т. д.).

Отдельно следует упомянуть о так называемой «психологической индукции». Этот термин, хотя и нечасто, можно встретить на просторах интернета. Все источники не дают хотя бы краткую формулировку определения этого термина, но ссылаются на «примеры из жизни», при этом выдавая за новый вид индукции то суггестию, то некоторые формы психических заболеваний, то крайние состояния психики человека. Из всего перечисленного понятно, что попытка вывести «новый термин», опираясь на ложные (зачастую не соответствующие действительности) посылки, обрекает экспериментатора на получение ошибочного (или поспешного) утверждения.

Следует отметить, что отсылка к экспериментам 1960 года (без указания места проведения, фамилий экспериментаторов, выборки испытуемых и самое главное - цели эксперимента) выглядит, мягко говоря, неубедительно, а утверждение о том, что мозг воспринимает информацию, минуя все органы восприятия (фраза «испытывает воздействие» в данном случае вписалась бы более органично), заставляет задуматься над легковерностью и некритичностью автора высказывания.

Вместо заключения

Царица наук - математика, не зря использует все возможные резервы метода индукции и дедукции. Рассмотренные примеры позволяют сделать вывод о том, что поверхностное и неумелое (бездумное, как еще говорят) применение даже самых точных и надежных методов приводит всегда к ошибочным результатам.

В массовом сознании метод дедукции ассоциируется со знаменитым Шерлоком Холмсом, который в своих логических построениях чаще использует примеры индукции, в нужных ситуациях пользуясь дедукцией.

В статье были рассмотрены примеры применения этих методов в различных науках и сферах жизнедеятельности человека.

Министерство образования Саратовской области

Саратовский государственный социально - экономический университет

Областной конкурс математических и компьютерных работ школьников

«Вектор будущего – 2007»

«Метод математической индукции.

Его применение к решению алгебраических задач»

(секция «математика»)

Творческая работа

ученицы 10«А» класса

МОУ «Гимназии №1»

Октябрьского района г. Саратова

Арутюнян Гаянэ.

Руководитель работы:

учитель математики

Гришина Ирина Владимировна.

Саратов

2007

Введение…………………………………………………………………………………3

Принцип математической индукции и его

доказательство…………………………………………………………………………..4

Примеры решений задач………………………………………………………………..9

Заключение……………………………………………………………………………..16

Литература………………………...……………………………………………………17

Введение.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно и подкреплять свою мысль доказательством, проведённым по всем правилам логики.
В настоящее время выросла область применения метода математической индукции, но в школьной программе ему, к сожалению, отводится мало времени. А ведь это так важно - уметь размышлять индуктивно.

Принцип математической индукции и его доказательство

Обратимся к существу метода математической индукции. Рассмотрим различные утверждения. Их можно подразделить на общие и частные.Приведем примеры общих утверждений.

Все граждане России имеют право на образование.

Во всяком параллелограмме диагонали в точке пересечения делятся пополам.

Все числа, оканчивающиеся нулем, делятся на 5 .

Соответствующие примеры частных утверждений:

Петров имеет право на образование.

В параллелограмме ABCD диагонали в точке пересечения делятся пополам.

140 делится на 5.

Переход от общих утверждений к частным называется дедукцией (от латинского deductio - вывод по правилам логики).

Рассмотрим пример дедуктивного вывода.

Все граждане России имеют право на образование. (1)

Петров – гражданин России. (2)

Петров имеет право на образование. (3)

Из общего утверждения (1) при помощи (2) получено частное утверждение (3).

Обратный переход от частных утверждений к общим называется индукцией (от латинского inductio - наведение).

Индукция может привести как к верным, так и к неверным выводам.

Поясним это двумя примерами.

140 делится на 5. (1)

Все числа, оканчивающиеся нулем, делятся на 5 . (2)

140 делится на 5. (1)

Все трехзначные числа делятся на 5. (2)

Из частного утверждения (1) получено общее утверждение (2). Утверждение (2) верно.

Второй пример показывает, как из частного утверждения (1) может быть получено общее утверждение (3) , притом утверждение (3) не является верным.

Зададимся вопросом, как пользоваться в математике индукцией, чтобы получать только верные выводы. Рассмотрим несколько примеров индукции, недопустимой в математике.

Пример 1 .

Рассмотрим квадратный трехчлен следующего вида Р(x )= x 2 + x + 41, на который обратил внимание еще Леонард Эйлер.

Р(0) = 41, Р(1) = 43, Р(2) = 47, Р(3) = 53, Р(4) = 61, Р(5) = 71, Р(6) = 83, Р(7) = 97, Р(8) = 113, Р(9)=131, Р(10) = 151.

Мы видим, что всякий раз значение трехчлена - простое число. На основании полученных результатов утверждаем, что при подстановке в рассматриваемый трехчлен вместо x любого целого неотрицательного числа всегда в результате получается простое число.

Однако сделанный вывод не может считаться достоверным. В чем же дело? Дело в том, что в рассуждениях высказаны общие утверждения относительно любого х только на основании того, что это утверждение оказалось справедливым для некоторых значений х.

В самом деле, при более внимательном изучении трехчлена Р(х) числа Р(0), Р(1), …, Р(39) - простые числа, но Р(40) = 41 2 – составное число. И совсем явно: Р(41) = 41 2 +41+41 кратно 41.

В этом примере мы встретились с утверждением, справедливым в 40 частных случаях и все же вообще оказавшимся несправедливым.

Рассмотрим еще несколько примеров.

Пример 2.

В 17 веке В.Г. Лейбниц доказал, что при всяком натуральном n числа вида n 3 - n кратны 3, n 5 - n кратны 5, n 7 - n кратны 7. На основании этого, он предложил, что при всяком нечетном k и натуральном n число n k - n кратно k , но скоро сам заметил, что 2 9 –2=510, которое, очевидно, не делится на 9 .

Рассмотренные примеры позволяют сделать важный вывод: утверждение может быть справедливым в целом ряде частных случаев и в то же время несправедливым вообще.

Естественно возникает вопрос: имеется утверждение, справедливое в нескольких частных случаях; все частные случаи рассмотреть невозможно; как же узнать, справедливо ли это утверждение вообще?

Этот вопрос иногда удается решить посредством применения особого метода рассуждений, называемого методом математической индукции. В основе этого метода лежит принцип математической индукции , заключенный в следующем: утверждение справедливо для любого натурального n , если:

    оно справедливо для n = 1;

    из справедливости утверждения для какого-то произвольного натурального n =k , следует его справедливость для n = k +1.

Доказательство.

Предположим противное, то есть пусть утверждение справедливо не для всякого натурального n . Тогда существует такое натуральное число m , что

    утверждение для n =m несправедливо,

    для всех n

Очевидно, что m >1, так как при n =1 утверждение справедливо (условие 1). Следовательно, m -1 - натуральное число. Для натурального числа m -1 утверждение справедливо, а для следующего натурального числа m оно несправедливо. Это противоречит условию 2. Полученное противоречие показывает неверность предположения. Следовательно, утверждение справедливо для всякого натурального n, ч. т. д.

Доказательство, основанное на принципе математической индукции, называется доказательством методом математической индукции. Такое доказательство должно состоять из двух частей, из доказательства двух самостоятельных теорем.

Теорема 1 . Утверждение справедливо для n =1.

Теорема 2 . Утверждение справедливо для n =k +1, если оно справедливо для n=k, где k-произвольное натуральное число.

Если обе эти теоремы доказаны, то на основании принципа математической индукции утверждение справедливо для любого
натурального n .

Необходимо подчеркнуть, что доказательство методом математической индукции, безусловно, требует доказательства обеих теорем 1 и 2. Пренебрежительное отношение к теореме 2 приводит к неверным выводам (примеры 1-2). Покажем на примере, сколь обязательно доказательство теоремы 1.

Пример 3 . «Теорема»: всякое натуральное число равно следующему за ним натуральному числу.

Доказательство проведем методом математической индукции.

Предположим, что k =k +1 (1).

Докажем, что k +1=k +2 (2). Для этого к каждой части «равенства» (1) прибавим 1.Получаем «равенство» (2). Выходит, что если утверждение справедливо для n =k , то оно справедливо и для n =k +1., ч.т.д.

Очевидное «следствие» из «теоремы»: все натуральные числа равны.

Ошибка заключается в том, что теорема 1, необходимая для применения принципа математической индукции не доказана и не верна, а доказана только вторая теорема.

Теоремы 1 и 2 имеют особое значение.

Теорема 1 создает базу для проведения индукции. Теорема 2 дает право неограниченного автоматического расширения этой базы, право перехода от данного частного случая к следующему, от n к n +1.

Если не доказана теорема 1 , а доказана теорема 2 , то, следовательно, не создана база для проведения индукции, и тогда бессмысленно применять теорему 2 ,так как и расширять-то, собственно, нечего.

Если не доказана теорема 2 , а доказана только теорема 1, то, хотя база для проведения индукции и создана, право расширения этой базы отсутствует.

Замечания .

    Иногда вторая часть доказательства опирается на справедливость утверждения не только для n =k , но и для n =k -1. В этом случае утверждение в первой части должно быть проверено для двух последующих значений n .

    Иногда утверждение доказывается не для всякого натурального n , а для n > m , где m – некоторое целое число. В этом случае в первой части доказательства утверждение проверяется для n =m +1, а если это необходимо, то для нескольких последующих значений n .

Подытожив сказанное, имеем: метод математической индукции позволяет в поисках общего закона испытывать возникающие при этом гипотезы, отбрасывать ложные и утверждать истинные.

Всем известна роль процессов обобщения результатов отдельных наблюдений и опытов (т.е. индукции) для эмпирических, экспериментальных наук. Математика же издавна считалась классическим образцом осуществления чисто дедуктивных методов, так как явно или неявно всегда подразумевается, что все математические предложения (кроме принятых за исходные - аксиом) доказываются, а конкретные применения этих предложений выводятся из доказательств, пригодных для общих случаев (дедукция).

Что же значит индукция в математике? Следует ли ее понимать как не вполне надежный способ, и как искать критерий надежности таких индуктивных методов? Или достоверность математических заключений той же природы, что и опытные обобщения экспериментальных наук, таких, что любой доказанный факт неплохо было бы еще и «проверить»? В действительности дело обстоит не так.

Индукции (наведение) на гипотезу играет в математике очень большую, но чисто эвристическую роль: она позволяет догадываться, каким должно быть решение. Но устанавливаются же математические предложения только дедуктивно. И метод математической индукции есть чисто дедуктивный метод доказательства. В самом деле, доказательство, проводимое этим методом, состоит из двух частей:

    так называемый «базис» – дедуктивное доказательство искомого предложения для одного (или нескольких) натурального числа;

    индукционный шаг, состоящий в дедуктивном доказательстве общего утверждения. Теорема именно доказывается для всех натуральных чисел. Из базиса, доказанного, например, для числа 0, мы получаем, по индукционному шагу, доказательство для числа 1, затем таким же образом для 2, для 3 …- и так утверждение может быть обосновано для любого натурального числа.

Иначе говоря, название «математическая индукция» обусловлено тем, что этот метод просто ассоциируется в нашем сознании с традиционными индуктивными умозаключениями (ведь базис действительно доказывается только для частного случая); индукционный шаг, в отличие от основанных на опыте критериев правдоподобности индуктивных умозаключений в естественных и общественных науках, есть общее утверждение, не нуждающееся ни в какой частной посылке и доказываемое по строгим канонам дедуктивных рассуждений. Поэтому математическую индукцию называют «полной» или «совершенной», так как она есть дедуктивный, совершенно надежный метод доказательства.

Примеры решений задач

Индукция в алгебре

Рассмотрим несколько примеров алгебраических задач, а также доказательство различных неравенств, решаемых с применением метода математической индукции.

Задача 1 . Угадать формулу для суммы и доказать её.

А(n )= 2  1 2 + 3 2 2 + …..+(n +1) n 2 .

Решение.

1. Преобразуем выражение для суммы А(n ):

A(n)= 2  1 2 + 3  2 2 + ….+ (n+1) n 2 = (1+1) 1 2 + (2+1) 2 2 + …. + (n+1) n 2 = =1  1 2 + 2  2 2 + …+n  n 2 + 1 2 + 2 2 +… +n 2 =1 3 + 2 3 +… +n 3 +1 2 + 2 2 +… +n 2 = В(n) + C(n), где B(n) = 1 3 + 2 3 + …..+ n 3 , C(n)= 1 2 + 2 2 +…+ n 2 .

2. Рассмотрим суммы C (n ) и B (n ).

а) С(n ) = 1 2 + 2 2 +…+ n 2 . Одна из часто встречающихся задач на метод математической индукции, доказать, что для любого натурального n , выполняется равенство

1 2 + 2 2 +…+ n 2 = (1)

Предположим, что (1) верно при всех n N .

б) B(n) = 1 3 + 2 3 + …..+ n 3 . Пронаблюдаем, как изменяются значения B (n ) в зависимости от n .

B(1) = 1 3 = 1 .

B(2) = 1 3 + 2 3 = 9 = 3 2 = (1 + 2) 2

B (3) = 1 3 + 2 3 + 3 3 = 36 =

Таким образом, можно предположить, что
B (n ) = (1 + 2 + ….+ n ) 2 =
(2)

в) В результате для суммы А(n ) получаем

А(n ) = =

= (*)

3. Докажем полученную формулу (*) методом математической индукции.

а) проверим справедливость равенства (*) при n = 1.

А(1) = 2=2,

Очевидно, что формула (*) при n = 1 верна.

б) предположим, что формула (*) верна при n=k , где k N, то есть выполняется равенство

A(k)=

Исходя из предположения, докажем справедливость формулы при n =k +1. Действительно,

A (k+1 )=

Так как формула (*) верна при n =1, и из предположения, что она верна при некотором натуральном k , следует ее справедливость при n =k +1, на основании принципа математической индукции заключаем, что равенство


выполняется при всяком натуральном n .

Задача 2.

Вычислить сумму 1-2 + 3-4 +…(-1) n -1 n .

Решение.

    Выпишем последовательно значения сумм при различных значениях n .

A(1)=1, A(2)=1-2= -1, A(3)=1-2+3=2, A(4)=1-2+3-4= -2,

A (5)=1-2+3-4+5=3, A (6)=1-2+3-4+5-6= -3.

Наблюдая закономерность, можем предположить, что A (n )= - при четных n и A (n )=
при нечетных n . Объединим оба результата в единую формулу:

A (n ) =
, где r – остаток от деления n на 2.

Иr , очевидно, определяется следующим правилом

0, если n – чётное,

r =

1, если n – нечётное.

Тогда r (можно догадаться) представимо в виде:

Окончательно получим формулу для A (n ):

A (n )=

(*)

Докажем выполнение равенства (*) при всех n N методом математической индукции.

2. а) Проверим равенство (*) при n =1. А(1) = 1=

Равенство справедливо

б) Предположим, что равенство

1-2+3-4+…+(-1) n-1 n =

верно при n =k . Докажем, что оно справедливо и при n =k +1, то есть

A (k +1)=

В самом деле,

A(k+1)=A(k)+(-1) k (k+1) =

=

Что и требовалось доказать.

Метод математической индукции применяется также для решения задач на делимость.

Задача 3.

Доказать, что число N (n )=n 3 + 5n делится на 6 при любом натуральном n.

Доказательство.

    При n =1 число N (1)=6 и потому утверждение справедливо.

    Пусть при некотором натуральном k число N (k )=k 3 +5k делится на 6. Докажем, что N (k +1)= (k +1) 3 + 5(k +1) делится на 6. Действительно, имеем
    N (k +1)= (k +1) 3 + 5(k +1)=(k 3 +5k )+3k (k +1)+6.

Поскольку k и k +1 - рядом стоящие натуральные числа, то одно из них обязательно четно, поэтому выражение 3k (k +1) делится на 6. Таким образом, получаем, что N (k +1) также делится на 6. Вывод число N (n )=n 3 + 5n делится на 6 при любом натуральном n.

Рассмотрим решение более сложной задачи на делимость, когда метод полной математической индукции приходится применять несколько раз.

Задача 4.

Доказать, что при любом натуральном n число
не делится нацело на число 2 n +3 .

Доказательство.


Представим
в виде произведения
=

= (*)

По предположению первый множитель в (*) не делится нацело на число 2 k +3 , то есть в представлении составного числа
в виде произведения простых чисел число 2 повторяется не более чем (k +2) раза. Таким образом, чтобы доказать, что число
не делится нацело на 2 k +4 , надо доказать, что
не делится на 4.

Для доказательства этого утверждения докажем вспомогательное утверждение: для любого натурального n число 3 2 n +1 не делится на 4. Для n =1 утверждение очевидно, так как 10 не делится на 4 без остатка. При предположении, что 3 2 k +1 не делится на 4, докажем, что и 3 2(k +1) +1 не делится
на 4. Представим последнее выражение в виде суммы:

3 2(k+1) +1=3 2k+2 +1=3 2k * 9+1=(3 2k +1)+8 * 3 2k . Второе слагаемое суммы делится на 4 нацело, а первое не делится. Следовательно, вся сумма не делится на 4 без остатка. Вспомогательное утверждение доказано.

Теперь ясно, что
не делится на 4, так как число 2 k является четным числом.

Окончательно получаем, что число
не делится нацело на число 2 n +3 ни при каком натуральном n .

Рассмотрим теперь пример применения индукции к доказательству неравенств.

Задача 5.

При каких натуральных n справедливо неравенство 2 n > 2n + 1?

Решение.

1. При n =1 2 1 < 2*1+1,

при n =2 2 2 < 2*2+1,

при n =3 2 3 > 2*3+1,

при n =4 2 4 > 2*4+1.

По-видимому, неравенство справедливо при любом натуральном n 3. Докажем это утверждение.

2. При n =3 справедливость неравенства уже показана. Пусть теперь неравенство справедливо при n =k , где k - некоторое натуральное число, не меньшее 3, т.е.

2 k > 2k +1 (*)

Докажем, что тогда неравенство справедливо и при n =k +1, то есть 2 k +1 >2(k +1)+1. Умножим (*) на 2, получим 2 k +1 >4k +2. Сравним выражения 2(k +1)+1 и 4k +2.

4k+2-(2(k+1)+1)=2k-1. Очевидно, что 2k -1>0 при любом натуральном k . Тогда 4k +2>2(k +1)+1, т.е. 2 k +1 >2(k +1)+1. Утверждение доказано.

Задача 6.

Неравенство для среднего арифметического и среднего геометрического n неотрицательных чисел (неравенство Коши). , получим =

Если хотя бы одно из чисел
равно нулю, то неравенство (**) также справедливо.

Заключение.

При выполнении работы я изучила суть метода математической индукции и его доказательство. В работе представлены задачи, в которых большую роль сыграла неполная индукция, наводящая на правильное решение, и затем проведено доказательство, полученное с помощью метода математической индукции.

Литература.

    Болтянский В.Г., Сидоров Ю.В., Шабурин М.И. Лекции и задачи по элементарной математике; Наука, 1974.

    Виленкин Н.Я. , Шварцбурд С.И. Математический анализ.-
    М.: Просвещение, 1973.

    Галицкий М.Л., Мошкович М.М, Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа.- М.: Просвещение, 1990.

    Потапов М.К., Александров В.В., Пасиченко П.И. Алгебра и анализ элементарных функций.- М.: Наука, 1980.

    Соминский И.С., Головина М.Л., Яглом И.М. О математической индукции.- М.: Наука, 1967.