Ионный механизм возникновения потенциала действия. Потенциал действия

Потенциал действия (ПД) -- это электрофизиологический процесс, выражающийся в быстром колебании мембранного потенциала покоя вследствие перемещения ионов в клетку и из клетки и способный распространяться без декремента (без затухания). ПД обеспечивает передачу сигналов между нервными клетками, между нервными центрами и рабочими органами; в мышцах ПД обеспечивает процесс электромеханического сопряжения. Графическое изображение ПД показано на рис.1.

Рис. 1.

а -- потенциал действия, его фазы: 1 -- деполяризация; 2 -- инверсия (овершут); 3 -- реполяризация; б -- натриевые ворота (h-1 -- в состоянии покоя клетки, h-2 -- восходящая, h-3 -- нисходящая части ПД); в -- калиевые ворота (1 в состоянии покоя клетки, 2 -- в состоянии возбуждения). Знаки «плюс» (+) и «минус» (--) отражают заряд внутри и вне клетки в различные фазы ПД.

Характеристика ПД. Величина ПД колеблется в пределах 80-- 130 мВ; длительность пика ПД нервного волокна 0,5--1 мс, волокна скелетной мышцы -- до 10 мс (с учетом замедления деполяризации в ее конце), длительность ПД сердечной мышцы 300--400 мс. Амплитуда ПД не зависит от силы раздражения, она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений, т. е. закону силы. При малом раздражении клетки ПД либо совсем не возникает, либо достигает максимальной величины, если раздражение является пороговым или сверхпороговым. Следует отметить, что слабое (подпороговое) раздражение может вызвать локальный потенциал. Он подчиняется закону силы: с увеличением силы стимула величина его также возрастает.

В составе ПД различают три фазы: 1) деполяризацию, т. е. исчезновение заряда клетки (уменьшение мембранного потенциала до нуля); 2) инверсию, т.е. изменение заряда клетки на обратный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя -- отрицательно; 3) реполяризацию, т. е. восстановление исходного заряда клетки, когда внутри клетки заряд снова становится отрицательным, а снаружи -- положительным.

Механизм возникновения ПД. Если действие раздражителя на клеточную мембрану приводит к началу развития ПД, далее сам процесс развития ПД вызывает фазовые изменения проницаемости клеточной мембраны, что обеспечивает быстрое движение Nа + в клетку, а К + -- из клетки. Это наиболее часто встречаемый вариант возникновения ПД. Величина мембранного потенциала при этом сначала уменьшается до нуля, затем заряд мембраны меняется на противоположный, а далее он восстанавливается до исходного уровня. Отмеченные изменения мембранного потенциала предстают в виде пикового потенциала -- ПД, возникающего вследствие накопленных и поддерживаемых ионными насосами градиентов концентраций ионов внутри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов ионов. Если заблокировать процесс выработки энергии, генерация ПД некоторое время сохраняется, но после исчезновения градиентов концентраций ионов (устранения потенциальной энергии) клетка генерировать ПД не будет. Рассмотрим фазы ПД.

Существует много различных названий фаз ПД (единых терминов нет). Наиболее корректны названия фаз ПД, в которых заложена общая идея изменения величин и знака заряда клетки: 1) фаза деполяризации -- процесс снижения заряда клетки до нуля; 2) фаза инверсии -- изменение заряда клетки на противоположный, т.е. весь период ПД, когда внутри клетки заряд положительный, а снаружи отрицательный; 3) фаза реполяризации -- восстановление заряда клетки до исходной величины (возврат к потенциалу покоя).

Фаза деполяризации (см. рис.1,а,1). При действии деполяризующего раздражителя на клетку, например электрического тока, начальная частичная деполяризация клеточной мембраны происходит без изменения ее проницаемости для ионов. Когда деполяризация достигает примерно 50% пороговой величины (50% порогового потенциала), возрастает проницаемость мембраны для Nа + , причем в первый момент сравнительно медленно. Естественно, что скорость входа Nа + в клетку при этом невелика. В этот период, как и во время всей первой фазы (деполяризации), движущей силой, обеспечивающей вход Nа + в клетку, являются концентрационный и электрический градиенты. Клетка внутри заряжена отрицательно (разноименные заряды притягиваются друг к другу), а концентрация Nа + вне клетки в 10-12 раз больше, чем внутри клетки. Условием, обеспечивающим вход Nа + в клетку, является увеличение проницаемости клеточной мембраны, которая определяется состоянием воротного механизма Nа + -каналов (в некоторых клетках, в частности в кардиомиоцитах и волокнах гладкой мышцы, важную роль в возникновении ПД играют управляемые каналы для Са 2+). Длительность пребывания электроуправляемого канала в открытом состоянии зависит от величины мембранного потенциала. Суммарный ток ионов в любой момент определяется числом открытых каналов клеточной мембраны. Часть ионного канала, обращенная во внеклеточное пространство, отличается от части канала, обращенной внутрь клетки. Воротный механизм Nа + -каналов расположен на внешней и внутренней сторонах клеточной мембраны, воротный механизм К + -каналов -- на внутренней (К + движется из клетки наружу). В каналах для Nа + имеются активационные m-ворота, которые расположены с внешней стороны клеточной мембраны (Nа + движется внутрь клетки во время ее возбуждения), и инактивационные h-ворота, расположенные с внутренней стороны клеточной мембраны. В условиях покоя активационные m-ворота закрыты, инактивационные h-ворота преимущественно (около 80%) открыты (см. рис.1,б,1); закрыты также калиевые активационные ворота (см. рис.1,в,1), инактивационных ворот для К + нет.

Иногда m-ворота называют быстрыми, h-ворота медленными, поскольку они в процессе возбуждения клетки реагируют позже, нежели m-ворота. Однако более поздняя реакция h-ворот связана с изменением заряда клетки, как и m-ворот, которые открываются в процессе деполяризации клеточной мембраны. Закрываются h-ворота в фазу инверсии, когда заряд внутри клетки становится положительным, что и является причиной их закрытия. При этом нарастание пика ПД прекращается. Поэтому m -ворота лучше назвать ранними, а h -ворота -- поздними.

Когда деполяризация клетки достигает критической величины (Е кр, критический уровень деполяризации -- КУД), которая обычно составляет --50 мВ (возможны и другие величины), проницаемость мембраны для Nа + резко возрастает: открывается большое число потенциалзависимых m-ворот Nа + -каналов (см. рис.1,б,2) и Nа + лавиной устремляется в клетку. Через один открытый Nа + - канал за 1 мс проходит до 6000 ионов. В результате интенсивного тока Nа + внутрь клетки процесс деполяризации проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости Nа + : открываются все новые и новые активационные m-ворота Nа + -каналов, что придает току Nа + в клетку характер регенеративного процесса. В итоге ПП исчезает, т. е. становится равным нулю. Фаза деполяризации на этом заканчивается.

Фаза инверсии. Восходящая часть. После исчезновения ПП вход в клетку Nа + продолжается (m -ворота Nа + - каналов еще открыты), поэтому число положительных ионов в клетке превосходит число отрицательных ионов, заряд внутри клетки становится положительным, снаружи -- отрицательным. Процесс перезарядки мембраны представляет собой вторую фазу потенциала действия -- фазу инверсии (см. рис.1,а,2). Теперь электрический градиент препятствует входу Nа + внутрь клетки (положительные заряды отталкиваются друг от друга), проводимость снижается. Тем не менее, некоторое время (доли миллисекунды) Nа + продолжает входить в клетку, о чем свидетельствует продолжающееся нарастание величины ПД. Это означает, что концентрационный градиент, обеспечивающий движение Nа + в клетку, сильнее электрического, препятствующего входу Nа + в клетку. Во время деполяризации мембраны увеличивается проницаемость ее и для Са 2+ , который также идет в клетку, но в нервных волокнах, нейронах и клетках скелетной мускулатуры роль Са 2+ в развитии ПД мала. В клетках гладкой мышцы и миокарда его роль существенна. Таким образом, вся восходящая часть пика ПД в большинстве случаев обеспечивается в основном входом Nа + в клетку.

Нисходящая составляющая фаза инверсии. Примерно через 0,5-- 2 мс и более после начала деполяризации (это время зависит от вида клетки) рост ПД прекращается в результате закрытия натриевых инактивационных h-ворот (см. рис.1) и открытия ворот К + -каналов, т. е. вследствие увеличения проницаемости К + и резкого возрастания выхода его из клетки (см. рис.1,в,2). Препятствует также росту пика ПД снижение электрического градиента Nа + (клетка внутри в этот момент заряжена положительно), а также выход К + из клетки по каналам утечки. Поскольку К + находится преимущественно внутри клетки, он, согласно концентрационному градиенту, начинает быстро выходить из нее, вследствие чего уменьшается число положительно заряженных ионов в клетке. Заряд клетки снова начинает уменьшаться. Во время нисходящей составляющей фазы инверсии выходу К + из клетки способствует также и электрический градиент. К + выталкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки (до конца фазы инверсии, см. рис.1,а,2, пунктирная линия), когда начинается следующая фаза ПД -- фаза реполяризации. Калий выходит из клетки не только по управляемым каналам, которые открыты, но и по неуправляемым, т.е. каналам утечки, что несколько замедляет ход восходящей части ПД и ускоряет ход нисходящей составляющей ПД.

Изменение мембранного потенциала покоя ведет к последовательному открытию или закрытию электроуправляемых ворот ионных каналов и движению ионов согласно электрохимическому градиенту -- возникновению ПД. Все фазы являются регенеративными: необходимо только достичь критического уровня деполяризации, далее ПД развивается за счет потенциальной энергии клетки в виде электрохимических градиентов, т. е. вторично-активно.

Амплитуда ПД складывается из величины ПП и величины фазы инверсии, составляющей у разных клеток 10--50 мВ. Если мембранный ПП мал, амплитуда ПД этой клетки небольшая.

Фаза реполяризации. (см. рис.1,а,3) связана с тем, что проницаемость клеточной мембраны для К + все еще высока (активационные ворота калиевых каналов открыты), К + продолжает быстро выходить из клетки согласно концентрационному градиенту. Поскольку клетка теперь снова внутри имеет отрицательный заряд, а снаружи -- положительный (см. рис.1,а,3), электрический градиент препятствует выходу К + из клетки, что снижает его проводимость, хотя он продолжает выходить. Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее электрического градиента. Таким образом, вся нисходящая часть пика ПД обусловлена выходом К + из клетки. Нередко в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для К + и замедлением выхода его из клетки в результате закрытия ворот К + -каналов. Следующая причина замедления тока К из клетки связана с возрастанием положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента.

Таким образом, главную роль в возникновении ПД играет Nа + , входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене Nа + в среде на другой ион, например холин, ПД в нервной и мышечной клетках скелетной мускулатуры не возникает. Однако проницаемость мембраны для К + тоже играет важную роль. Если предотвратить повышение проницаемости для К + тетраэтиламмонием, мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналов утечки ионов), через которые К + будет выходить из клетки.

Роль Са 2+ в возникновении ПД в нервных и мышечных клетках скелетной мускулатуры незначительна. Однако Са 2+ играет важную роль в возникновении ПД сердечной и гладкой мышц, в передаче импульсов от одного нейрона к другому, от нервного волокна к мышечному, в обеспечении мышечного сокращения. Снижение содержания Са 2+ в крови на 50%, что иногда встречается в клинической практике, может привести к судорожным сокращениям скелетных мышц. Это объясняется значительным повышением возбудимости нервных и мышечных клеток в результате снижения ПП из-за уменьшения степени нейтрализации отрицательных фиксированных зарядов на поверхности клеточной мембраны и отрицательно заряженных карбоксильных групп интерстиция. Вследствие этого повышается реактивность нейронов, так как ПП приближается к Е кр, кроме того, начинается активация Nа + -каналов. В ответ на поступление самой незначительной импульсации нейроны начинают генерировать ПД в большом количестве, что проявляется в судорожных сокращениях скелетной мускулатуры. При этом нейроны ЦНС и нервные волокна могут разряжаться и спонтанно.

Следовые явления в процессе возбуждения клетки. В конце ПД, например в скелетной мышце, нередко наблюдается замедление реполяризации -- отрицательный следовой потенциал (рис.2,а).

Рис. 2. ПД двух клеток: а -- замедление фазы реполяризации; б -- следовые явления: 1 -- следовая гиперполяризация; 2 -- следовая деполяризация

Затем может быть зарегистрирована гиперполяризация клеточной мембраны, что более характерно для нервных клеток (рис.2,б,1). Это явление называют положительным следовым потенциалом. Вслед за ним может возникнуть частичная деполяризация клеточной мембраны, которую также называют отрицательным следовым потенциалом (рис.2,б,2), как и в случае замедления фазы реполяризации. Вслед за ПД возникают не потенциалы, а следовые явления -- сначала следовая гиперполяризация, а затем следовая деполяризация. Причем следовые явления возникают после полного восстановления мембранного потенциала до исходного уровня, но не как результат замедления фазы реполяризации, являющейся одной из фаз ПД. В сердечной и гладкой мышцах тоже наблюдается замедленная реполяризация -- плато, но на более высоком уровне.

Следовая гиперполяризация клеточной мембраны (рис. 2,б,1) обычно является следствием еще сохраняющейся повышенной проницаемости клеточной мембраны для К + , она характерна для нейронов. Активационные ворота К + -каналов еще не полностью закрыты, поэтому К + продолжает выходить из клетки согласно концентрационному градиенту, что и ведет к гиперполяризации клеточной мембраны. Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и калиевые ворота возвращаются в исходное состояние), а мембранный потенциал становится таким же, каким он был до возбуждения клетки. Na + /К + -помпа непосредственно за фазы потенциала действия не отвечает, хотя она и продолжает работать во время развития ПД: ионы перемещаются с огромной скоростью согласно концентрационному и частично электрическому градиентам.

Следовая деполяризация (рис. 2,б,2) также характерна для нейронов, но может быть зарегистрирована и в клетках скелетной мышцы. Механизм следовой деполяризации изучен недостаточно. Возможно, она связана с кратковременным повышением проницаемости клеточной мембраны для Na + и входом его в клетку согласно концентрационному и электрическому градиентам.

Мембранный потенциал (МП) - разность потенциалов между наружной и внутренней стороной мембраны в состоянии физиологического покоя.

Причины возникновения МП:

1. неодинаковое распределение ионов по обе стороны мембраны: внутри - больше К+, снаружи - его мало, но больше Nа+ и Cl. такое распределение ионов называется ионной ассиметрией.

2. избирательная проницаемость мембраны для ионов. В состоянии покоя мембрана неодинакова проницаема.

За счет этих факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта в результате разности концентрации ионов.

Ионы К выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны. Сl - пассивно переходит во внутрь клетки, что приводит к повышению положительного заряда на наружной поверхности мембраны. Nа накапливается на наружной поверхности мембраны и увеличивает «+» заряд. Органические соединения остаются внутри клетки.

В результате такого движения наружная поверхность мембраны «+» заряжена, а внутренняя «-». Внутренняя поверхность может быть «-» заряжена, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние называется поляризацией.

Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов, т.е. пока не наступит электрохимическое равновесие.

Момент равновесия зависит от двух сил:

2. Сила электрохимического взаимодействия.

Значение электрохимического равновесия:

3. поддержание ионной асимметрии

4. поддержание величины мембранного потенциала на постоянном уровне.

Возникновение МП при участи двух сил называют концентрационно-электрохимическим.

Для поддержания ионной симметрии электрохимического равновесия в клетке имеется Nа-К насос. В клеточной мембране имеется система переносчиков, каждый из которых связывает 3Na, которые находятся снаружи, а с внутренней стороны переносчик связывает 2К и переносит внутрь клетки. При этом расходуется 1 молекула АТФ.

Работа Nа-К насоса обеспечивает:

1. высокую концентрацию К внутри клетки, т.е. постоянную величину потенциала покоя

2. низкую концентрацию Nа внутри клетки, т.е. сохраняется нормальная осмомолярность, объем клетки, создает базу для генерации ПД.

3. стабильный концентрационный градиент Nа, способствуя транспорту аминокислот и сахаров.

МП в норме : для гладких мышц -30 - (-70) мВ, для нерва -50 - (-70) мВ, для миокарда -60 - (-90) мВ.

Потенциал действия (ПД) - сдвиг потенциала покоя, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой мембраны.


При действии порогового и сверхпорогового раздражителей изменяется проницаемость клеточной мембраны для ионов. Для Nа увеличивается в 450 раз и градиент нарастает быстро. Для К увеличивается в 10-15 раз и градиент развивается медленно. В результате движение Nа происходит внутрь клетки, К двигается из клетки, что приводит к перезарядке клеточной мембраны.

Фазы:

0. Локальный ответ (местная деполяризация), предшествующий развитию ПД.

1. Фаза деполяризации . Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд - внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2 мсек.

2. Фаза реполяризации. Она начинается при достижении определенного уровня МП (примерно +20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя. Длительность фазы 3-5 мсек.

3. Фаза следовой деполяризации или следового отрицательного потенциала. Период, когда возвращение МП к потенциалу покоя временно задерживается. Он длится 15-30 мсек.

4. Фаза следовой гиперполяризации или следового положительного потенциала. В эту фазу, МП на некоторое время становится выше исходного уровня ПП. Ее длительность 250-300 мсек.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота натриевых каналов открываются и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы. Т.е. натриевая проницаемость мембраны резко возрастает. Причем от чувствительности активационных зависит величина критического уровня деполяризации, чем она выше, тем ниже КУД и наоборот.

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (+20 мВ), сила концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко усиливается выход ионов калия, т.е. калиевый выходящий ток. В некоторых клетках это происходит из-за активации специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смещения МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и активационных ворот натриевых каналов, что еще больше снижает натриевую проницаемость мембраны и ускоряет реполяризацию.

Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов остается открытой.

Следовая гиперполяризация связана с повышенной, после ПД, калиевой проводимостью мембраны и тем, что более активно работает натрий-калиевый насос , выносящий вошедшие в клетку во время ПД ионы натрия.

Соотношение фаз потенциала действия и возбудимости.

Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением.

В фазу реполяризации ПД, когда открываются все натриевые каналы и ионы натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной невозбудимости или абсолютной рефрактерности.

В фазе реполяризации все большая часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной невозбудимости или относительной рефрактерности.

Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение клетки. Следовательно в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она находится в фазе субнормальной возбудимости. Рис. Следует отметить, что явление аккомодации также связано с изменением проводимости ионных каналов. Если деполяризующий ток нарастает медленно, то это приводит к частичной инактивации натриевых, и активации калиевых каналов. Поэтому развития ПД не происходит.

Форма потенциала действия позволяет разделить процесс его генерации на несколько фаз: предспайк, быстрая деполяризация, реполяризация и следовые потенциалы (рис. 2.3).

Рис. 2.3.

Предспайк - это процесс медленной деполяризации мембраны, который начинается с первого отклонения от потенциала покоя и заканчивается достижением КУД. Предспайк включает пассивную деполяризацию мембраны и активный локальный ответ. Активный ответ возникает, когда пассивная деполяризация мембраны достигает 70-80% от значений КУД и является первым проявлением начинающегося активного состояния мембраны - началом ее возбуждения. Благодаря пассивной деполяризации и локальному активному ответу сдвиг потенциала на мембране достигает критического уровня деполяризации, при котором и развивается собственно ПД.

Фаза быстрой (лавинообразной) деполяризации мембраны является первой фазой ПД. На этой стадии мембранный потенциал быстро сдвигается от критического уровня деполяризации до нуля и продолжает смещаться вплоть до пика Г1Д, перезаряжая мембрану. Во время первой фазы ПД потенциал на мембране «извращается», т.е. мембрана разряжается до нуля и перезаряжается с противоположным знаком. Участок ПД со значениями от нуля до пика перезарядки носит название овершут (англ, overshoot) потенциала. Вместо отрицательных значений потенциал на мембране становится положительным. У гигантского аксона кальмара пик ПД достигает значений порядка +50 мВ, а фаза деполяризации с овер- шутом длится порядка 0,5 мс.

Фаза реполяризации является второй фазой ПД. Во время этой фазы значение потенциала на мембране возвращается к исходному значению, т.е. к потенциалу покоя. Эта фаза может быть подразделена на быструю реполяризацию от +50 мВ до 0 В и более медленную реполяризацию - от 0 В до КУД и далее до потенциала покоя. Фаза реполяризации занимает 1-2 мс.

Следовые потенциалы могут в ряде случаев развиваться в конце ПД в виде медленной деполяризации или даже медленной гиперполяризации. Следовая гиперполяризация наблюдается, в частности, на мембране гигантского аксона кальмара.

Ионная природа фаз потенциала действия была изучена в ходе экспериментов на гигантских аксонах кальмара Ходжкиным и Хаксли. Выяснилось, что в момент генерации ПД электрическое сопротивление мембраны аксона на период 1-2 мс снижается в 20-30 раз, г.е. резко возрастает проводимость мембраны, и через мембрану начинает протекать ток. Но какой это ток? Оказалось, что если удалить катионы Na + из наружного раствора и заменить их на сахарозу, то амплитуда потенциала действия резко уменьшается либо ПД вообще не возникает. Это позволило сделать заключение, что главной причиной генерации ПД и перезарядки мембраны до положительных значений является возникновение высокой проницаемости мембраны к катионам натрия и быстрый вход этих катионов внутрь клетки.

Движение натрия внутрь происходит под действием двух сил. Первая сила связана с наличием трансмембранного концентрационного градиента катионов натрия. Концентрация натрия в наружном растворе в 20-30 раз больше, чем внутри, т.е. концентрационный градиент для Na + направлен внутрь клетки, и при наличии достаточной проницаемости катионы натрия будут быстро входить в клетку. Вторая сила связана с наличием большого отрицательного заряда на внутренней стороне мембраны (порядка -70 мВ). Отрицательный заряд на внутренней стороне мембраны будет способствовать входу положительно заряженных катионов натрия в клетку. Входя, катионы натрия будут сначала стремительно уменьшать отрицательный заряд мембраны до нуля, а потом перезаряжать мембрану до положительных значений, приближая величину мембранного потенциала к равновесному потенциалу для Na + . Напомним, что равновесный потенциал для катионов Na" может быть рассчитан по уравнению Нернста и составляет для гигантского аксона кальмара +55 мВ.

В пользу участия входящего натриевого тока в создании деполяриза- ционной фазы ПД свидетельствуют результаты экспериментов с тетродо- токсином - блокатором потенциал-зависимой натриевой проницаемости. Тетродотоксин способен полностью блокировать развитие Г1Д (рис. 2.4, а).

Рис. 2.4. Изменения ПД, возникающие при действии на мембрану избирательных блокаторов натриевой проницаемости - тетродотоксина (я) или калиевой проницаемости - тетраэгиламмония (б)

Таким образом, натриевая гипотеза удовлетворительно объясняет развитие деполяризационной фазы ПД, но оставляет открытым вопрос о причинах рсиоляризации, т.е. фазы ПД, приводящей к возврату мембранного потенциала к уровню потенциала покоя. Было высказано предположение, что на мембране развивается еще один процесс - возрастает ее проницаемость к ионам калия. Было ясно, что это - особая активная калиевая проницаемость, отличающаяся от пассивной калиевой проницаемости, существующей у мембраны в покое (пассивной калиевой утечки). Дополнительная калиевая проницаемость мембраны возникает только в ответ на деполяризацию мембраны до критического уровня, причем с небольшим запаздыванием по сравнению с увеличением натриевой проницаемости. В случае возникновения такой дополнительной активной проницаемости к калию катионы К* начинают выходить из клетки под действием концентрационного градиента и заряда на мембране, созданного опережающим входом катионов натрия. Входящие катионы Na + заряжают внутреннюю сторону мембраны положительно, а наружную - отрицательно. Дополнительный выходящий ток катионов калия будет уменьшать созданный натриевым током положительный заряд внутри клетки и возвращать электрический заряд па мембране к исходным значениям, т.е. к потенциалу покоя.

В пользу участия выходящего калиевого тока в создании реполяризаци- онной фазы ПД свидетельствовали результаты экспериментов с использованием блокатора активной калиевой проницаемости - тетраэтиламмония. Тетраэтиламмоний резко замедляет протекание фазы реполяризации ПД (рис. 2.4, б).

Если ПД является результатом появления и развития на мембране двух новых ионных токов, которых не было в покое, а именно токов натрия и калия, то, следовательно, при деполяризации на мембране открываются новые потенциал-активируемые ионные каналы. Эти каналы проводят сначала натрий, а затем - калий. Свойства таких каналов можно понять, анализируя развитие токов, которые возникают при их работе. Но эти токи надо регистрировать «в чистом виде», т.е. не осложненные одновременными изменениями потенциала на мембране и емкостными токами мембраны. Для этого Ходжкиным и Хаксли в их экспериментах на гигантских аксонах кальмара впервые был использован метод фиксации потенциала на мембране (англ, voltage-clamp).

Метод фиксации потенциала на мембране заключается в подключении к мембране аксона системы двух усилителей. Один усилитель предназначен для регистрации сдвигов мембранного потенциала, второй работает по принципу отрицательной обратной связи. В аксон вводятся два проволочных микроэлектрода. Один из них измеряет сдвиги мембранного потенциала и передает их на усилитель с отрицательной обратной связью. Этот усилитель (отслеживающий сдвиги потенциала на мембране и генерирующий токи) на выходе соединяют со вторым внутриклеточным микроэлектродом - токовым. Через этот микроэлектрод будет подаваться ток, который можно измерять во внешней цепи индифферентного электрода, расположенного снаружи аксона.

Если теперь искусственно деполяризовать мембрану до КУД, то в ответ через возбужденную мембрану начинают течь потенциал-активируемые токи: натриевый и калиевый. Создаваемые этими токами сдвиги мембранного потенциала мгновенно отслеживаются при помощи усилителя обратной связи, посылающего через токовый микроэлектрод равные по амплитуде, но противоположно направленные токи, - возникает обратная связь. Такие «токи фиксации» удерживают (фиксируют) мембрану от сдвигов потенциала и являются, по существу, зеркальным отражением Na + - и К + -токов. Токи фиксации могут быть легко измерены во внешней цепи схемы (рис. 2.5).


Рис. 2.5.

(voltage-clamp ):

при помощи усилителя обратной связи токовый электрод пропускает ток фиксации, являющийся зеркальным отражением трансмембранных токов

На рис. 2.6 приведены данные, полученные с применением метода фиксации потенциала. При деполяризации мембраны от -65 до -9 мВ мембрана возбуждается, что сопровождается генерацией двухфазного тока. Видно, что сначала возникает быстрый входящий ток, который затухает и сменяется на более медленно развивающийся выходящий ток. Оказалось, что входящий ток можно полностью заблокировать с помощью тетродоток- сина - избирательного блокатора потенциал-зависимых натриевых каналов. Из этого следует, что входящий ток - натриевый ток.

Выходящий ток, также возникавший в ответ на деполяризацию, при этом сохраняется и выявляется в чистом виде. Этот ток развивается с небольшой задержкой, нарастает медленнее, но зато не затухает и сохраняется в течение всего времени деполяризации. Он полностью блокируется блокатором потенциал-активируемых калиевых каналов тетраэтилам- монием и, следовательно, представляет собой потенциал-активирусмый К + -ток. Таким образом, с помощью метода фиксации потенциала и использования избирательных блокаторов натриевого и калиевого токов удалось разделить и выявить по отдельности два тока, возникающих при генерации ПД, показать их независимость друг от друга и проанализировать каждый из них.

Рис. 2.6.

а - смещение мембранного потенциала на 56 мВ и фиксация его на уровне -9 мВ;

6 - двухфазный (ранний входящий и поздний выходящий) ток в ответ на фиксацию потенциала на уровне -9 мВ; в - фармакологическое разделение двух токов с помощью блокаторов натриевой (тетродотоксин) и калиевой (тетраэтиламмоний)

Биопотенциалы.

    Понятие и виды биопотенциалов. Природа биопотенциалов.

    Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

    Условия возникновения и фазы потенциала действия.

    Механизм генерации потенциала действия.

    Методы регистрации и экспериментального исследования биопотенциалов.

Понятия и виды биопотенциалов. Природа биопотенциалов.

Биопотенциалы – любые разности потенциалов в живых системах: разность потенциалов между клеткой и окружающей средой; между возбуждённым и невозбуждённым участками клетки; между участками одного организма, находящимися в разных физиологических состояниях.

Разность потенциалов -электрический градиент – характерная черта всего живого.

Виды биопотенциалов:

    Потенциал покоя (ПП) – постоянно существующая в живых системах разность потенциалов, характерная для стационарного состояния системы. Он поддерживается постоянно протекающими звеньями обмена веществ.

    Потенциал действия (ПД) – быстро возникающая и вновь исчезающая разность потенциалов, характерная для переходных процессов.

Биопотенциалы тесно связаны с метаболическими процессами, следовательно, являются показателями физиологического состояния системы.

Величина и характер биопотенциалов являются показателями изменений в клетке в норме и патологии.

Существует большая группа электрофизиологических методов диагностики , основанных на регистрации биопотенциалов (ЭКГ, ЭМГ и т.д.).

В основе возникновения биопотенциалов лежит несимметричное относительно мембраны распределение ионов, т.е. различные концентрации ионов по разные стороны мембраны. Непосредственная причина – различная скорость диффузии ионов по их градиентам, определяющаяся селективностью мембраны.

Биопотенциалы – ионные потенциалы, преимущественно мембранной природы – это основное положениеМембранной теории биопотенциалов (Бернштейн, Ходжкин, Катц).

Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

Натриевый насос – создаёт и поддерживает градиент концентрации иона натрия, иона калия, регулируя их поступление в клетку и выведение из неё.

В состоянии покоя клетка проницаема главным образом для ионов калия. Они диффундируют по градиенту концентрации через клеточную мембрану из клетки в окружающую жидкость. Крупные органические анионы, содержащиеся в клетке не могут преодолеть мембрану. Таким образом внешняя поверхность мембраны заряжается положительно, а внутренняя – отрицательно.

Изменение зарядов и разности потенциалов на мембране продолжается пока силы, обуславливающие градиент концентрации калия не уравновесятся силами возникающего электрического поля, следовательно, не будет достигнуто стационарное состояние системы.

Разность потенциалов через мембрану в этом случае и есть – потенциал покоя.

Вторая причина возникновения потенциала покоя – электрогенность калий-натриевого насоса.

Теоретическое определение потенциала покоя:

При учёте лишь калиевой проницаемости мембраны в состоянии покоя потенциал покоя можно вычислить по уравнению Нернста:

R – универсальная газовая постоянная

T – абсолютная температура

F – число Фарадея

С iK – концентрация калия внутри клетки

C eK – концентрация калия снаружи клетки

На самом деле, помимо ионов калия, клеточная мембрана проницаема также и для ионов натрия и хлора, однако в меньшей степени. Если градиент натрия поступает внутрь клетки, то мембранный потенциал уменьшается. Если градиент хлора поступает внутрь клетки, то мембранный потенциал увеличивается.

, где

P – проницаемость мембраны для данного иона.

Условия возникновения и фазы потенциала действия.

Раздражители – внешние или внутренние факторы, действующие на клетку.

При действии раздражителей на клетку меняется электрическое состояние клеточной мембраны.

Потенциал действия возникает лишь при действии раздражителя достаточной силы и длительности.

Пороговая сила – минимальная сила раздражителя, необходимая для инициации потенциала действия. Раздражители большей силы –надпороговые ; меньшей силы –подпороговые . Пороговая сила раздражителя находится в обратной зависимости от его длительности в определённых пределах.

Если у раздражителя надпороговой или пороговой силы на участке раздражения возникает электрический импульс характерной формы, распространяющийся вдоль всей мембраны, то возникнет потенциал действия .

Фазы потенциала действия:

    Восходящая – деполяризация

    Нисходящая – реполяризация

    Гиперполяризация (возможна, но не обязательна)

- потенциал цитоплазмы

- действие раздражителя ((над)пороговой силы)

д – деполяризация

р – реполяризация

г – гиперполяризация

Фаза деполяризации – быстрая перезарядка мембраны: внутри положительный заряд, снаружи – отрицательный.

Фаза реполяризации – возвращение заряда и потенциала мембраны к исходному уровню.

Фаза гиперполяризации – временное превышение уровня покоя, предшествующее восстановлению потенциала покоя.

Амплитуда потенциала действия заметно превышает амплитуду потенциала покоя – «овершут » (перелёт).

Механизм генерации потенциала действия.

Потенциал действия – результат изменения ионной проницаемости мембраны.

Проницаемость мембраны для ионов натрия – непосредственная функция мембранного потенциала. Если мембранный потенциал понижается, то натриевая проницаемость возрастает.

Действие порогового раздражителя : уменьшение мембранного потенциала до критической величины (критическая деполяризация мембраны) → резкое повышение натриевой проницаемости → усиленный приток натрия в клетку по градиенту → дальнейшая деполяризация мембраны → процесс зацикливается → включается механизм положительной обратной связи. Усиленный приток натрия в клетку вызывает перезарядку мембраны и окончание фазы деполяризации. Положительный заряд на внутренней поверхности мембраны становится достаточным для уравновешивания градиента концентрации ионов натрия. Усиленное поступление натрия в клетку заканчивается, следовательно, заканчивается фаза деполяризации.

P K:P Na:P Cl в состоянии покоя 1: 0,54: 0,045,

на высоте фазы деполяризации: 1: 20: 0,045.

В процессе фазы деполяризации проницаемость мембраны для ионов калия и хлора не меняется, а для ионов натрия – возрастает в 500 раз.

Фаза реполяризации : увеличивается проницаемость мембраны для ионов калия → усиленный выход ионов калия из клетки по градиенту концентрации → Уменьшение положительного заряда на внутренней поверхности мембраны, обратное изменение мембранного потенциала → уменьшение натриевой проницаемости → обратная перезарядка мембраны → уменьшение калиевой проницаемости, замедление оттока калия из клетки.

К концу фазы реполяризации происходит восстановление потенциала покоя. Мембранный потенциал и проницаемость мембраны для ионов калия и натрия возвращается к уровню покоя.

Фаза гиперполяризации : возникает, если проницаемость мембраны для ионов калия ещё повышена, а для ионов натрия уже вернулась к уровню покоя.

Резюме:

Потенциал действия формируется двумя потоками ионов через мембрану. Поток ионов натрия внутрь клетки → перезарядка мембраны. Поток ионов калия наружу → восстановление потенциала покоя. Потоки почти одинаковы по величине, но сдвинуты по времени.

Диффузия ионов через клеточную мембрану в процессе генерации потенциала действия осуществляется по каналам, которые являются высокоселективными, т.е. они обладают большей проницаемостью для данного иона (открытие для него дополнительных каналов).

При генерации потенциала действия клетка приобретает определённое количество натрия и теряет определённое количество калия. Выравнивание концентраций этих ионов между клеткой и средой не происходит благодаря калий-натриевому насосу.

Методы регистрации и экспериментального исследования биопотенциалов .

1. Внутриклеточное отведение.

Один электрод погружают в межклеточную жидкость, другой (микроэлектрод) - вводится в цитоплазму. Между ними – измерительный прибор.

Микроэлектрод представляет собой полую трубку, кончик которой оттянут до диаметра в доли микрона, а пипетка наполнена хлоридом калия. При введении микроэлектрода мембрана плотно охватывает кончик, и повреждения клетки почти не происходит.

Для создания потенциала действия в эксперименте клетка стимулируется надпороговыми токами, т.е. ещё одна пара электродов связана с источником тока. На микроэлектрод подаётся положительный заряд.

С их помощью можно регистрировать биопотенциалы как крупных, так и мелких клеток, а также биопотенциалы ядер. Но наиболее удобным, классическим объектом исследований, являются биопотенциалы крупных клеток. Например,

Nitella ПП 120 мВ (120 * 10 3 В)

Гигантский аксон кальмара ПП 60мВ

Клетки миокарда человека ПП 90 мВ

2. Фиксация напряжения на мембране.

В определённый момент развитие потенциала действия искусственно прерывается с помощью специальных электронных схем.

При этом фиксируется значение мембранного потенциала и величины ионных потоков через мембрану в данный момент, следовательно, есть возможность их измерения.

3. Перфузия нервных волокон.

Перфузия – замена оксоплазмы искусственными растворами различного ионного состава. Таким образом, можно определить роль конкретного иона в генерации биопотенциалов.

Проведение возбуждения по нервным волокнам.

    Роль потенциала действия в жизнедеятельности.

    Об аксонах.

    Кабельная теория проведения.

    Направление и скорость проведения.

    Непрерывное и сальтаторное проведение.

Роль потенциала действия в жизнедеятельности .

Раздражимость – способность живых клеток под влиянием раздражителей (определённых факторов внешней или внутренней среды) переходить из состояния покоя в состояние активности. При этом всегда меняется электрическое состояние мембраны.

Возбудимость – способность специализированных возбудимых клеток в ответ на действие раздражителя генерировать особую форму колебания мембранного потенциала –потенциал действия .

В принципе возможно несколько видов ответов возбудимых клеток на раздражение, в частности – локальный ответ и потенциал действия.

Потенциал действия возникает, если действует пороговый или надпороговый раздражитель. Он вызывает уменьшение мембранного потенциала до критического уровня. Тогда происходит открытие дополнительных натриевых каналов, резкое увеличение натриевой проницаемости и развитие процесса по механизму положительной обратной связи.

Локальный ответ возникает, если действует подпороговый раздражитель, составляющий 50-70% от порогового. Деполяризация мембраны при этом меньше критической, наступает лишь кратковременное, небольшое увеличение натриевой проницаемости, механизм положительной обратной связи не включается, и потенциал быстро возвращается к исходному состоянию.

В процессе развития потенциала действия возбудимость меняется.

Снижение возбудимости – относительная рефрактерность .

Полная утрата возбудимости – абсолютная рефрактерность .

По мере приближения к уровню критической деполяризации возбудимость повышается, так как для достижения этого уровня и развития потенциала действия становится достаточно и небольшого изменения мембранного потенциала. Именно так меняется возбудимость в начале фазы деполяризации, а также при локальном ответе клетки на раздражение.

При удалении мембранного потенциала от критической точки возбудимость снижается. На пике фазы деполяризации, когда клетка уже не может реагировать на раздражение открытием дополнительных натриевых каналов, наступает состояние абсолютной рефрактерности.

По мере реполяризации абсолютная рефрактерность сменяется относительной; к концу фазы реполяризации возбудимость снова увеличена (состояние «супернормальности»).

Во время фазы гиперполяризации возбудимость снова снижена.

Возбуждение – ответ специализированных клеток на действие пороговых и надпороговых раздражителей – это сложный комплекс физико-химических и физиологических изменений, в основе которого лежит потенциал действия.

Результат возбуждения зависит от того, в какой ткани оно развивалось (где возник потенциал действия).

К специализированным возбудимым тканям относятся :

    • мышечная

      железистая

Потенциалы действия обеспечивают проведение возбуждения по нервным волокнам и инициируют процессы сокращения мышечных и секреции железистых клеток.

Потенциал действия, возникающий в нервном волокне – нервный импульс.

Об аксонах.

Аксоны (нервные волокна) – длинные отростки нервных клеток (нейронов).

Афферентные пути – от органов чувств к ЦНС

Эфферентные пути – от ЦНС к мышцам.

Протяжённость – метры.

Диаметр в среднем от 1 до 100 мкм (у гигантского аксона кальмара – до 1 мм).

По наличию или отсутствию миелиновой оболочки различают аксоны:

      миелинизированные (миелиновые, мякотные) – есть миелиновая оболочка

      немиелинизированные (амиелиновые, безмякотные) – не имеют миелиновые оболочки

Миелиновая оболочка – окружающая аксон дополнительная многослойная (до 250 слоёв) мембрана, образующаяся при внедрении аксона в шванновскую клетку (леммоцит, олигодендроцит), и многократном наматывании мембраны этой клетки на аксон.

Миелин – очень хороший изолятор.

Через каждые 1-2 мм миелиновая оболочка прерывается перехватами Ранвье , протяжённостью около 1 мкм каждый.

Только в области перехватов возбудимая мембрана контактирует с внешней средой.

Кабельная теория проведения.

Аксон по ряду свойств подобен кабелю: это полая трубка, внутренне содержимое – аксоплазма – проводник (как и межклеточная жидкость), стенка – мембрана – изолятор.

Механизм проведения возбуждения (распространения нервного импульса) включает 2 ступени:

    Возникновение локальных токов и распространение волны деполяризации вдоль волокна.

    Формирование потенциалов действия на новых участках волокна.

Локальные токи циркулируют между возбужденным и невозбуждённым участками нервного волокна ввиду разной полярности мембраны на этих участках.

Внутри клетки они текут от возбуждённого участка к невозбуждённому. Снаружи – наоборот.

Локальный ток вызывает сдвиг мембранного потенциала соседнего участка, и начинается распространение волны деполяризации по волокну, как тока по кабелю.

Когда деполяризация очередного участка достигает критической величины, происходит открытие дополнительных натриевых, потом калиевых каналов, возникновение потенциала действия.

В разных участках волокна потенциал действия формируется независимыми ионными потоками, перпендикулярными к направлению распространения.

При этом на каждом участке происходит энергетическая подпитка процесса , так как градиенты ионов, идущих по каналам, создаются насосами, работа которых обеспечивается энергией гидролиза АТФ.

Роль локальных токов – лишь инициация процесса путём деполяризации всё новых участков мембраны до критического уровня.

Благодаря энергетической подпитке нервный импульс распространяется вдоль волокна без затухания (с неизменной амплитудой).

Направление и скорость проведения.

Одностороннее проведение нервного импульса обеспечивают:

      наличие в нервной системе синапсов с односторонним проведением

      свойство рефрактерности нервного волокна, что делает невозможным обратный ход возбуждения

Скорость проведения тем выше, чем более выражены кабельные свойства волокна. Для их оценки применяютконстанту длины нервного волокна :

, где

D – диаметр волокна

b m – толщина мембраны

- удельное сопротивление мембраны

- удельное сопротивление аксоплазмы

Физический смысл константы : она численно равна расстоянию, на котором подпороговый потенциал уменьшился бы вe раз. С увеличением константы длины нервного волокна увеличивается и скорость проведения.

Между наружной поверхностью клетки и ее цитоплазмой в состоянии покоя существует разность потенциалов около 0,06-0,09 в, причем поверхность клетки заряжена электроположительно по отношению к цитоплазме. Эту разность потенциалов называют потенциалом покоя или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения токов, очень мощных усилителей и чувствительных регистрирующих приборов - осциллографов.

Микроэлектрод (рис. 67, 69) представляет собой тонкий стеклянный капилляр, кончик которого имеет диаметр около 1 мкм. Этот капилляр заполняют солевым раствором, погружают в него металлический электрод и соединяют с усилителем и осциллографом (рис. 68). Как только микроэлектрод прокалывает покрывающую клетку мембрану, луч осциллографа отклоняется вниз из своего исходного положения и устанавливается на новом уровне. Это свидетельствует о наличии разности потенциалов между наружной и внутренней поверхностью клеточной мембраны.

Наиболее полно происхождение потенциала покоя объясняет так называемая мембранно-ионная теория. Согласно этой теории все клетки покрыты мембраной, имеющей неодинаковую проницаемость для различных ионов. В связи с этим внутри клетки в цитоплазме в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем на поверхности. В состоянии покоя клеточная мембрана более проницаема для ионов калия, чем для ионов натрия. Диффузия положительно заряженных ионов калия из цитоплазмы на поверхность клетки придает наружной поверхности мембраны положительный заряд.

Таким образом, поверхность клетки в покое несет на себе положительный заряд, тогда как внутренняя сторона мембраны оказывается заряженной отрицательно за счет ионов хлора, аминокислот и других крупных органических анионов, которые через мембрану практически не проникают (рис. 70).

Потенциал действия

Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя, то в этом участке возникает возбуждение, проявляющееся в быстром колебании мембранного потенциала и называемое потенциалом действия .

Потенциал действия можно зарегистрировать либо с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), либо микроэлектрода, введенного в цитоплазму (внутриклеточное отведение).

При внеклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий период, измеряемый тысячными долями секунды, становится заряженной электроотрицательно по отношению к покоящемуся участку.

Причина возникновения потенциала действия - изменение ионной проницаемости мембраны. При раздражении проницаемость клеточной мембраны для ионов натрия повышается. Ионы натрия стремятся внутрь клетки, так как, во-первых, они заряжены положительно и их влекут внутрь электростатические силы, во-вторых, концентрация их внутри клетки невелика. В покое клеточная мембрана была малопроницаемой для ионов натрия. Раздражение изменило проницаемость мембраны, и поток положительно заряженных ионов натрия из внешней среды клетки в цитоплазму значительно превышает поток ионов калия из клетки наружу. В результате внутренняя поверхность мембраны становится заряженной положительно, а наружная вследствие потери положительно заряженных ионов натрия отрицательно. В этот момент и регистрируется пик потенциала действия.

Повышение проницаемости мембраны для ионов натрия продолжается очень короткое время. Вслед за этим в клетке возникают восстановительные процессы, приводящие к тому, что проницаемость мембраны для ионов натрия вновь понижается, а для ионов калия возрастает. Поскольку ионы калия также заряжены положительно, то, выходя из клетки, они восстанавливают исходные отношения снаружи и внутри клетки.

Накопления ионов натрия внутри клетки при многократном возбуждении ее не происходит потому, что ионы натрия эвакуируются из нее постоянно за счет действия специального биохимического механизма, называемого "натриевым насосом". Есть данные и об активном транспорте ионов калия с помощью "натрий-калиевого насоса".

Таким образом, согласно мембранно-ионной теории в происхождении биоэлектрических явлений решающее значение имеет избирательная проницаемость клеточной мембраны, обусловливающая разный ионный состав на поверхности и внутри клетки, а следовательно, и разный заряд этих поверхностей. Следует заметить, что многие положения мембранно-ионной теории все еще дискуссионны и нуждаются в дальнейшей разработке.