Глюкоза сахароза крахмал целлюлоза сравнительная таблица. Углеводы

Углеводы

Важнейший класс природных соединений, имеющих обобщенную формулу (СН20)П. В зависимости от состава и строения среди углеводов выделяют моносахариды (глюкоза, фруктоза, рибоза и др.), олигосахариды (сахароза, лактоза и др.) и высшие полисахариды (крахмал, гликоген, целлюлоза и др.).

Углеводы имеют важное значение в жизнедеятельности всех организмов, так как служат основным источником энергии и входят в структурные комплексы. Существенную роль играют углеводы группы мукополисахаридов, являющиеся составными компонентами различных слизей, желудочного сока, слюны, семенной плазмы, и в виде комплексов с коллагеном или липидами входящие в состав хрящей, сухожилий, костной ткани.

Различные углеводы, поступающие в организм с пищей, расщепляются в желудочно-кишечном тракте до мономеров, из которых в клетках синтезируются необходимые структурные компоненты, или при избытке депонируются в виде гликогена в печени.

Глюкоза в крови

Глюкоза -- моносахарид, являющийся основным энергетическим субстратом для большинства тканей организма. Концентрация глюкозы в плазме (сыворотке) крови -- интегральный показатель обмена углеводов в организме. К повышению концентрации, глюкозы в крови ведут поступление углеводов (крахмала, гликогена, сахарозы и др.) с пищей, распад гликогена в печени, синтез глюкозы в печени из продуктов распада белков, жиров и углеводов (глюконеогенез). Отток глюкозы из крови в ткани происходит вследствие ее использования для синтеза запасной формы глюкозы -- гликогена в основном в печени и скелетных мышцах, синтеза гетерополисахаридов, высших жирных кислот (при избыточном поступлении в организм углеводов). Соотношение скорости процессов образования и утилизации глюкозы, следовательно, и концентрация глюкозы в крови регулируются гормонами. Гипергликемический эффект в норме оказывают несколько гормонов -- глюкагон, кортизол, адреналин, глюкокортикоиды, усиливающие различные процессы образования глюкозы в тканях. Инсулин - единственный гипогликемический гормон. Стимуляция транспорта глюкозы из крови в клетки и активация фермента тлюкокиназы (гексокиназы) инсулином ведут к усилению всех процессов утилизации глюкозы в тканях-мишенях для этого гормона (печени, скелетных мышцах, жировой ткани).

Таблица Диагностический уровень концентрации глюкозы, ммоль/л

Момент взятия пробы

Цельная кровь

Плазма венозной крови

венозная

капиллярная

Нарушение толерантности к глюкозе

Через 2 ч после нагрузки глюкозой

>6,7 и <10,0

>7,8и <11,1

>7,8и<11,1

Сахарный диабет

Через 2 ч после нагрузки глюкозой

При клинических признаках и подозрении на диабет проводят пробу с нагрузкой глюкозой или тест толератности к глюкозе. Он является очень эффективным методом выявления скрытых нарушений углеводного обмена и проводится в еле дующих случаях:

  • -- у лиц с эпизодической или постоянной глюкозурией (наличие глюкозы в моче) без клинических проявлений сахарного диабетаи нормальным уровнем глюкозы в крови;
  • -- у пациентов с клиническими признаками сахарного диабета, но с нормальным уровнем глюкозы в крови и отсутствием ее в моче;
  • -- улиц, имеющих устойчивую семейную предрасположенность к диабету, но не имеющих его явных признаков;
  • -- у больных с наличием глюкозы в моче на фоне беременности, тиреотоксикоза, заболеваний печени, инфекций или с нарушениями зрения неясной природы. углевод глюкоза кровь

За три дня до проведения теста с нагрузкой глюкозой необходимо отменить лекарства, которые могут повлиять на результаты анализа -- салицилаты, оральные контрацептивы, кортикостероиды эстрогены, никотиновую кислоту, аскорбиновую кислоту (витамин С). Тест нельзя проводить людям, недавно перенесшим хирургические операции, инфаркт миокарда, роды, а также в тех случаях, когда уровень глюкозы натощак более 11,1 мМ/л.

Тест проводится утром натощак. Делается забор крови из пальца для определения исходного уровня глюкозы, после чего пациент принимает 75 г глюкозы в стакане теплой воды. Доза для детей -- 1,75 г на кг массы. Через 1 и 2 часа проводят повторный забор крови для определения глюкозы. У здоровых и больных диабетом эти показатели различны.

КУРСОВАЯ РАБОТА

Углеводы и их свойства . Глюкоза


Введение

СПИД, сахарный диабет, бронхиальная астма, рак – это неполный перечень заболеваний для которых так и не найдены альтернативные препараты, помогающие полностью излечить их. Задачей здравоохранения является найти лекарственные препараты для излечения этих болезней.

Фармацевтическая химия – наука, изучающая способы получения, физические и химические свойства, методы контроля качества лекарственных веществ, влияние отдельных особенностей строения молекул лекарственных веществ на характер действия их на организм, изменения, происходящие при их хранении.

Решение задач, стоящих перед фармацевтической химией поможет выявить новые свойства уже имеющихся лекарственных препаратов и открыть новые.


1. Углеводы

Углеводы - обширная группа полигидроксикарбонильных соединений, входящих в состав всех живых организмов. Особенно широко они распространены в растительном мире: 80% сухой массы растений составляют углеводы; к углеводам относят также многие производные, получаемые при химической модификации этих соединений путем окисления, восстановления или введения различных заместителей.

Углеводы участвуют в обмене веществ и энергии в организме человека и животных. Являясь основным компонентом пищи, углеводы поставляют большую часть энергии, необходимой для жизнедеятельности (более половины энергии у человека образуется за счет углеводов). Некоторые углеводы входят в состав нуклеиновых кислот, осуществляющих биосинтез белка и передачу наследственных признаков.

К углеводам относят глюкозу, фруктозу, сахар (сахарозу), крахмал, целлюлозу (клетчатку) и др. Одни из них являются основными продуктами питания, другие (целлюлоза) используются для получения бумаги, пластмасс, волокон и т.д.

Термин "углеводы" возник потому, что первые известные представители углеводы по составу отвечали формуле CmH2nOn (углерод + вода); впоследствии были обнаружены природные углеводы с другим элементным составом.

1.1 Классификация и распространение

Углеводы принято делить на моносахариды, олигосахариды и полисахариды.

К наиболее обычным и распространенным в природе моносахаридам относят D-глюкозу, D-галактозу, D-маннозу, D-фрук-тозу, D-ксилозу, L-арабинозу и D-рибозуглеводы. Из представителей других классов моносахаридов часто встречаются:

1) дезоксисахара, в молекулах которых одна или несколько групп ОН заменены атомами H (напр., L-рамноза, L-фукоза, 2-дезокси-D-рибоза);

2) аминосахара, где одна или несколько групп ОН заменены на аминогруппы (напр., 2-амино-2-дезокси-D-глюкоза, или D-глюкозамин);

3) многоатомные спирты (полиолы, альдиты), образующиеся при восстановлении карбонильной группы моносахаридов (D-сорбит из D-глюкозы, D-маннит из D-маннозы);

4) уроновые кислоты - альдозы, у которых группа CH2OH окислена в карбоксильную (напр., D-глюкуроновая кислота);

5) разветвленные сахара, содержащие нелинейную цепь углеродных атомов (апиоза, или 3-С- гидроксиметил-D-глицеро-тетроза);

6) высшие сахара с длиной цепи более шести атомов С (напр., D-седогеп-тулоза и сиаловые кислоты.

За исключением D-глюкозы и D-фруктозы свободные моносахариды встречаются в природе редко. Обычно они входят в состав разнообразных гликозидов, олиго - и полисахаридов и м. б. получены из них после кислотного гидролиза. Разработаны многочисленные методы химического синтеза редких моносахаридов исходя из более доступных.

Олигосахариды содержат в своем составе от 2 до 10-20 моносахаридных остатков, связанных гликозидными связями. Наиболее распространены дисахариды, выполняющие функцию запасных B-B: сахароза в растениях, трегалоза в насекомых и грибах, лактоза в молоке млекопитающих. Известны многочисленные гликозиды олигосахаридов, к которым относят различные физиологически активные вещества некоторые сапонины (в растениях), мн. антибиотики (в грибах и бактериях), гликолипиды.

Полисахариды - высокомолекулярные соединения линейные или разветвленные молекулы которых построены из остатков моносахаридов, связанных гликозидными связями. В состав полисахаридов могут входить также заместители неуглеводной природы. В свою очередь цепи высших олигосахаридов и полисахаридов могут присоединяться к полипептидным цепям с образованием гликопротеинов.

Особую группу составляют биополимеры, в молекулах которых остатки полиолов, гликозилполиолов, нуклеозидов или моно - и олигосахаридов соединены не гликозидными, а фосфодиэфирными связями. К этой группе относят тейхоевые кислоты бактерий, компоненты клеточных стенок некоторых дрожжей, а также нуклеиновые кислоты, в основе которых лежит поли-D-рибозофосфатная (РНК) или поли-2-дезок-си-D-рибозофосфатная (ДНК) цепь.

Физико-химические свойства. Обилие полярных функциональных групп в молекулах моносахаридов приводит к тому, что эти вещества легко растворимы в воде и не растворимы в малополярных органических растворителях. Способность к таутомерным превращениям обычно затрудняет кристаллизацию моно – и олигосахаридов, однако если такие превращения невозможны (напр., как в гликозидах и невосстанавливающих олигосахаридах типа сахарозы), то вещества кристаллизуются легко. Многие гликозиды с малополярными агликонами (сапонины) проявляют свойства ПАВ.

Полисахариды - гидрофильные полимеры, многие из них образуют высоковязкие водные растворы, а в ряде случаев прочные гели.

Некоторые полисахариды образуют высокоупорядоченные надмолекулярные структуры, препятствующие гидратации отдельных молекул; такие полисахариды (хитин, целлюлоза) не растворимы в воде.

Биологическая роль. Функции углеводов в живых организмах чрезвычайно многообразны. В растениях моносахариды являются первичными продуктами фотосинтеза и служат исходными соединениями для биосинтеза гликозидов и полисахаридов, а также др. классов B-B (аминокислот, жирных K-T, фенолов и др.). Эти превращения осуществляются ферментами, субстратами для которых служат, как правило, богатые энергией производные сахаров, главным образом нуклеозиддифосфат-сахара.

Углеводы запасаются в растениях (в виде крахмала), животных, бактериях и грибах (в виде гликогена), где служат энергетическим резервом. Источником энергии являются реакции расщепления глюкозы, образующейся из этих полисахаридов. В виде гликозидов в растениях и животных осуществляется транспорт различных метаболитов. Полисахариды и более сложные углеводсодержащие полимеры выполняют в живых организмах опорные функции. Жесткая клеточная стенка у высших растений представляет собой сложный комплекс из целлюлозы, гемицеллюлоз и пектинов. Армирующим полимером в клеточной стенке бактерий служат пептидогликаны (муреины), а в клеточной стенке грибов и наружных покровах членистоногих – хитин. В организме животных опорные функции выполняют протео-гликаны соединительные ткани. Эти вещества участвуют в обеспечении специфических физико-химических свойств таких тканей, как кости, хрящи, сухожилия, кожа. Будучи гидрофильными полианионами, эти полисахариды способствуют также поддержанию водного баланса и избирательной ионной проницаемости клеток.

Особенно ответственна роль сложных углеводы в образовании клеточных поверхностей и мембран и придании им специфических свойств. Так, гликолипиды - важнейшие компоненты мембран нервных клеток и оболочек эритроцитов, а липополисахариды - наружной оболочки грамотрицательных бактерий. Углеводы клеточной поверхности часто определяют специфичность иммунологических реакций (групповые вещества крови, бактериальные антигены) и взаимодействие клеток с вирусами. Углеводные структуры принимают участие и в других высокоспецифических явлениях клеточного взаимодействия таких, как оплодотворение, узнавание клеток при тканевой дифференциации, отторжение чужеродных тканей и т. д.

Углеводы составляют главную часть пищевого рациона человека, в связи с чем широко используются в пищевой и кондитерской промышленности (крахмал, сахароза и др.). Кроме того, в пищевой технологии применяют структурированные вещества полисахаридной природы, не имеющие сами по себе пищевой ценности,- гелеобразователи, загустители, стабилизаторы суспензий и эмульсий (альгинаты, пектины, растительные галактоманнаны и др.).

Превращения моносахаридов при спиртовом брожении лежат в основе процессов получения этанола, пивоварения, хлебопечения; др. виды брожения позволяют получать из сахаров биотехнологическими методами глицерин, молочную, лимонную, глюконовую кислоты и многие другие вещества.

Глюкозу, аскорбиновую кислоту, углеводсодержащие антибиотики, гепарин широко применяют в медицине. Целлюлоза служит основой для получения вискозного волокна, бумаги, некоторых пластмасс, BB и др. Сахарозу и растит, полисахариды рассматривают как перспективное возобновляемое сырье, способное в будущем заменить нефть.


2. Глюкоза

Бесцветные кристаллы или белый мелкокристаллический порошок без запаха, сладкого вкуса. Растворим в воде (1:15) трудно- в спирте.

Растворы стерилизуют при 100° в течение 60 минут Ели при 119-121° в течение 5-7 минут. Для стабилизации прибавляют 0,1 н. раствор соляной кислоты и натрия хлорид; рН растворов 3,0-4,0.

Для медицинских целей применяют изотонический (4,5-5%) и гипертонические (10-40%) растворы.

Изотонический раствор применяют для пополнения организма жидкостью, вместе с тем он является источником легко усвояемого организмом ценного питательного материала. При сгорании глюкозы в тканях выделяется значительное количество энергии, которая служит для осуществления функций организма.

При введении в вену гипертонических растворов повышается осмотическое давление крови, усиливается ток жидкости из тканей в кровь, повышаются процессы обмена веществ, улучшается антитоксическая функция печени, усиливается сократительная деятельность сердечной мышцы, расширяются сосуды, увеличивается диурез. Растворы глюкозы широко применяют в медицинской практике при гипогликемии, инфекционных заболеваниях, заболеваниях печени (при гепатитах, дистрофии и атрофии печени), при декомпенсации сердечной деятельности, отеке легких, при геморрагических диатезах, при токсикоинфекциях, различных интоксикациях (отравлениях наркотиками, синильной кислотой и ее солями, окисью углерода, анилином, мышьяковистым водородом, фосгеном и другими веществами) и при различных других патологических состояниях.

служат основным источником энергии. Примерно 60% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров. Углеводы содержатся преимущественно в продуктах растительного происхождения.

В зависимости от сложности строения, растворимости, быстроты усвоения углеводы пищевых продуктов делятся на:

простые углеводы - моносахариды (глюкоза, фруктоза, галактоза), дисахариды (сахароза, лактоза);

сложные углеводы - полисахариды (крахмал, гликоген, пектиновые вещества, клетчатка).

Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам.

Простые углеводы. Моносахариды.
Моносахариды - самый быстрый и качественный источник энергии для процессов, происходящих в клетке.

Глюкоза - наиболее распространенный моносахарид. Она содержится во многих плодах и ягодах, а также образуется в организме в результате расщепления дисахаридов и крахмала пищи. Глюкоза наиболее быстро и легко используется в организме для образования гликогена, для питания тканей мозга, работающих мышц (в том числе и сердечной мышцы), для поддержания необходимого уровня сахара в крови и создания запасов гликогена печени. Во всех случаях при большом физическом напряжении глюкоза может использоваться как источник энергии.

Фруктоза обладает теми же свойствами, что и глюкоза, и может рассматриваться как ценный, легкоусвояемый сахар. Однако она медленнее усваивается в кишечнике и, поступая в кровь, быстро покидает кровяное русло. Фруктоза в значительном количестве (до 70 - 80%) задерживается в печени и не вызывает перенасыщение крови сахаром. В печени фруктоза более легко превращается в гликоген по сравнению с глюкозой. Фруктоза усваивается лучше сахарозы и отличается большей сладостью. Высокая сладость фруктозы позволяет использовать меньшие ее количества для достижения необходимого уровня сладости продуктов и таким образом снизить общее потребление сахаров, что имеет значение при построении пищевых рационов ограниченной калорийности. Основными источниками фруктозы являются фрукты, ягоды, сладкие овощи.

Основными пищевыми источниками глюкозы и фруктозы служит мед: содержание глюкозы достигает 36.2%, фруктозы - 37.1%. В арбузах весь сахар представлен фруктозой, количество которой составляет 8%. В семечковых преобладает фруктоза, а в косточковых (абрикосы, персики, сливы) - глюкоза.

Галактоза является продуктом расщепления основного углевода молока - лактозы. Галактоза в свободном виде в пищевых продуктах не встречается.

Простые углеводы. Дисахариды.
Из дисахаридов в питании человека основное значение имеет сахароза, которая при гидролизе распадается на глюкозу и фруктозу.

Сахароза. Важнейший пищевой источник ее тростниковый и свекловичный сахар. Содержание сахарозы в сахаре-песке составляет 99.75%. Натуральными источниками сахарозы являются бахчевые, некоторые овощи и фрукты. Попадая в организм, она легко разлагается на моносахариды. Но это возможно, если мы потребляем сырой свекольный или тростниковый сок. Обыкновенный сахар имеет на много более сложный процесс усвоения.

Это важно! Избыток сахарозы оказывает влияние на жировой обмен, усиливая жирообразование. Установлено, что при избыточном поступлении сахара усиливается превращение в жир всех пищевых веществ (крахмала, жира, пищи, частично и белка). Таким образом, количество поступающего сахара может служить в известной степени фактором, регулирующим жировой обмен. Обильное потребление сахара приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Избыток сахара отрицательно сказывается на функции кишечной микрофлоры. При этом повышается удельный вес гнилостных микроорганизмов, усиливается интенсивность гнилостных процессов в кишечнике, развивается метеоризм. Установлено, что в наименьшей степени эти недостатки проявляются при потреблении фруктозы.

Лактоза (молочный сахар) - основной углевод молока и молочных продуктов. Ее роль весьма значительна в раннем детском возрасте, когда молоко служит основным продуктом питания. При отсутствии или уменьшении фермента лактозы, расщепляющей лактозу до глюкозы и галактозы, в желудочно-кишечном тракте наступает непереносимость молока.

Сложные углеводы. Полисахариды.
Сложные углеводы, или полисахариды, характеризуются усложненным строением молекулы и плохой растворимостью в воде. К сложным углеводам относятся крахмал, гликоген, пектиновые вещества и клетчатка.

Мальтоза (солодовый сахар) - промежуточный продукт расщепления крахмала и гликогена в желудочно-кишечном тракте. В свободном виде в пищевых продуктах она встречается в меде, солоде, пиве, патоке и проросшем зерне.

Крахмал - важнейший поставщик углеводов. Он образуется и накапливается в хлоропластах зеленых частей растения в форме маленьких зернышек, откуда путем гидролизных процессов переходит в водорастворимые сахара, которые легко переносятся через клеточные мембраны и таким образом попадают в другие части растения, в семена, корни, клубни и другие. В организме человека крахмал сырых растений постепенно распадается в пищеварительном тракте, при этом распад начинается еще во рту. Слюна во рту частично превращает его в мальтозу. Вот почему хорошее пережевывание пищи и смачивание ее слюной имеет исключительно важное значение. Старайтесь в своем питании чаще использовать продукты, содержащие естественную глюкозу, фруктозу и сахарозу. Наибольшее количество сахара содержится в овощах, фруктах и сухофруктах, а также проросшем зерне.

Крахмал имеет основное пищевое значение. Высоким его содержанием в значительной степени обуславливается пищевая ценность зерновых продуктов. В пищевых рационах человека на долю крахмала приходится около 80% общего количества потребляемых углеводов. Превращение крахмала в организме в основном направлено на удовлетворение потребности в сахаре.

Гликоген в организме используется в качестве энергетического материала для питания работающих мышц, органов и систем. Восстановление гликогена происходит путем его его ресинтеза за счет глюкозы.

Пектины относятся к растворимым веществам, усваивающимися в организме. Современными исследованиями показано несомненное значение пектиновых веществ в питании здорового человека, а также возможность использовать их с терапевтической целью при некоторых заболеваниях преимущественно желудочно-кишечного тракта.

Клетчатка по химической структуре весьма близка к полисахаридам. Высоким содержанием клетчатки характеризуются зерновые продукты. Однако помимо общего количества клетчатки, важное значение имеет ее качество. Менее грубая, нежная клетчатка хорошо расщепляется в кишечнике и лучше усваивается. Такими свойствами обладает клетчатка картофеля и овощей. Клетчатка способствует выведению из организма холестерина.

Потребность в углеводах определяется величиной энергетических затрат. Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 - 500 г. в сутки. У спортсменов по мере увеличения интенсивности и тяжести физических нагрузок потребность в углеводах увеличивается и может возрастать до 800 г в сутки.

Это важно! Способность углеводов быть высокоэффективным источником энергии лежит в основе их сберегающего белок действия. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50 - 60г., чтобы избежать кетоза, кислого состояния крови, которое может развиться, если для образования энергии используются преимущественно запасы жира. Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов.

Если употреблять слишком много углеводов, больше, чем организм может преобразоваться в глюкозу или гликоген, то в результате, это ведет к ожирению. Когда телу нужно больше энергии, то жир преобразуется обратно в глюкозу, и вес тела снижается. При построении пищевых рационов чрезвычайно важно не только удовлетворить потребности человека в необходимом количестве углеводов, но и подобрать оптимальные соотношения качественно различных типов углеводов. Наиболее важно учитывать соотношение в рационе легкоусвояемых углеводов (сахаров) и медленно всасывающихся (крахмал, гликоген).

При поступлении с пищей значительных количеств сахаров они не могут полностью откладываться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, поскольку инсулин оказывает мощное стимулирующее действие на жироотложение.

В отличие от сахаров крахмал и гликоген медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. В связи с этим целесообразно удовлетворять потребности в углеводах в основном за счет медленно всасывающихся углеводов. На их долю должно приходиться 80 - 90% от общего количества потребляемых углеводов. Ограничение легкоусвояемых углеводов приобретает особое значение для тех, кто страдает атеросклерозом, сердечно-сосудистыми заболеваниями, сахарным диабетом, ожирением.

Будет здорово, если вы напишете комментарий:

Углеводы являются главным источником энергии для организма, и около 60% этой энергии организм принимает в виде углеводов, а оставшуюся часть, в виде белков и жиров. При этом углеводы находятся в основном в продуктах растительного происхождения. И все же что такое углеводы .

Углеводы пищевых продуктов подразделяются на простые углеводы, это:

  • моносахариды (фруктоза, глюкоза, галактоза),
  • дисахариды (лактоза, сахароза).

Кроме того в их число входят и сложные углеводы , а это полисахариды, включающие гликоген, крахмал, клетчатка и пектиновые вещества.

Простые углеводы легко растворимы в воде, они усваиваются довольно быстро. Их легко распознать по явному сладкому вкусу, они и относятся к сахарам.

Углевод глюкоза

Самый распространенный моносахарид, это глюкоза. Она входит в состав многих плодов и ягод, но при этом производится и в организме а следствие расщепления крахмала пищи и дисахаридов. Глюкоза лучше всего применима в организме для образования гликогена, ей питаются ткани мозга, работающие мышцы, она поддерживает нужный уровень сахара в крови и создает запас гликогена печени. , как источник энергии.

Польза фруктозы

Фруктоза имеет те же свойства, что и глюкоза, но она несколько медленнее усваивается в кишечнике, а, поступая в кровь, сравнительно быстро покидает кровяное русло. Фруктоза в ощутимом количестве (до 80%) задерживается в печени и не производит перенасыщения крови сахаром. В печени фруктоза легче превращается в гликоген, ели сравнивать ее с глюкозой. , нежели сахароза и она более сладкая. Это ее свойство применяется для уменьшения ее количества при достижении нужного порядка сладости продуктов, что позволяет уменьшить общее потребление сахара. Это важно при назначении пищевых рационов уменьшенной калорийности. Фруктоза, в основном, содержится во фруктах, ягодах и сладких овощах.

Большим пищевым источником глюкозы и фруктозы является мед, там 36.2% глюкозы и 37.1%фруктозы. В арбузах весь сахар — фруктоза, ее там 8%. В семечковых, также фруктоза, но в косточковых культурах, к числу которых относятся персики, абрикосы, сливы — глюкоза.

Простые углеводы галактоза и сахароза

Галактоза — это результат расщепления лактозы — основного углевода молок а и в свободном виде в пищевых продуктах она не встречается.

Из дисахаридов в пище человека, в основном присутствует сахароза, распадающаяся при гидролизе на глюкозу и фруктозу.

Сахароза — это весьма важная продукция, получаемая из тростникового и свекловичного сахара. В сахаре-песке сахарозы содержится до 99.75%. Натуральные поставщики сахарозы, это бахчевые культуры, а также некоторые овощи и фрукты. Попав в организм, сахароза без затруднений разлагается на моносахариды. Однако это происходит, когда мы потребляем сырой свекольный, либо тростниковый сок. Обычный сахар усваивается намного сложнее.

Молочный сахар — лактоза

Молочный сахар — лактоза — это основной углевод молочных продуктов. Ее очень велика в раннем детском возрасте, при этом молоко — . Если фермент расщепляющей лактозу до глюкозы и галактозы уменьшается, либо отсутствует, в ЖКТ наблюдается непереносимость молока.

Сложные углеводы — полисахариды, обладают усложненным строением молекулы и слабой растворимостью в воде. Это гликоген, крахмал, пектиновые вещества и клетчатка.

Углевод Мальтоза

Солодовый сахар — Мальтоза является промежуточным веществом, возникающим при расщеплении крахмала и гликогена в ЖКТ. В свободном виде ее можно определить в меде, пиве, солоде, патоке и проросшем зерне.

Важнейшим поставщиком углеводов является крахмал . Крахмал сырых растений поступательно распадается в пищеварительном тракте организма человека, а распад начинается еще во рту. Слюна рта начинает превращать т его в мальтозу. Именно поэтому тщательное пережевывание пищи и обработка ее слюной весьма важны.

Следует всегда применять продукты, в которых содержится естественная глюкоза, фруктоза и сахароза. Больше всего сахара в овощах, фруктах и сухофруктах, но кроме того, он есть и в проросшем зерне.

Яковлева О.А. Урок с использованием ЭОР

Место работы : муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа № 28» г. Балаково Саратовской области (МАОУ СОШ №28 г. Балаково Саратовской области»)

Предмет: химия

Тема: Классификация углеводов. Моносахариды. Глюкоза.

Продолжительность: 45 минут

Класс: 10

Тип урока: урок формирования знаний

Технологии : ЭОР Единой коллекции цифровых образовательных ресурсов (http://school-collection.edu.ru).

Технологические особенности : для просмотра ЭОР необходимо установить на компьютере следующие программы: Power Point-2007; проигрыватель Flash8-en; проигрыватель Java Runtime Environment 1.5 ; проигрыватель для просмотра видеофрагментов (например KMPlayer).

Цель урока: систематизировать знания об углеводах, как классе органических соединений; изучить строение, свойства, способы получения и применение моносахаридов на примере глюкозы.

Задачи урока:

Образовательные:

актуализировать знания о классификации углеводов;

исследовать химические свойства глюкозы и на основании этого сделать вывод о её строении;

изучить способы получения и применение глюкозы;

проконтролировать степень усвоения знаний с помощью теста.

Воспитательные:

формировать мировоззрение учащихся;

воспитывать самостоятельность, чувство собственного достоинства.

Развивающие:

совершенствовать умения и навыки при проведении химического эксперимента с соблюдением правил техники безопасности;

развивать память, речь, мышление, умение анализировать, сопоставлять, делать выводы;

совершенствовать навыки решения тестовых заданий;

развивать познавательный интерес, творческие способности, уверенность в своих силах, настойчивость.

Методы обучения: использование ЦОР, химический эксперимент, метод исследования, фронтальная беседа, фронтальный опрос.

Оборудование: компьютер, проектор, экран, пробирки, держатель для пробирок, спиртовка.

Реактивы: растворы медного купороса CuSO4 ∙ 5H2O, гидроксида натрия NaOH, глюкозы C6H12O6.

Ход урока.

Организационный этап.

Актуализация знаний. Постановка цели.

Вступление учителя:

Человеческий организм не может не только расти и развиваться, но и просто существовать без притока органических веществ. В отличие от растений и подобно животным, он не может сам создавать органические соединения из неорганического сырья. Кроме того, организму требуется энергия - как для обеспечения соответствующей температуры тела, так и для совершения работы, следовательно, пища - жизнь.

Вопросы классу:

Из чего состоит наша пища?

Какие вещества являются главными поставщиками энергии организму человека?

Наша пища состоит из очень большого числа различных химических веществ: белков, жиров, углеводов, витаминов, минеральных веществ. Среди них имеются соединения, которые определяют её энергетическую и биологическую ценность, участвуют в формировании структуры, вкуса, цвета и аромата пищевых продуктов.

Главными поставщиками энергии организму человека являются углеводы. Углеводами богаты зерновые и бобовые культуры, картофель, фрукты и овощи. Считается, что на 60% потребности человека в энергии должны обеспечиваться углеводами. В день человек должен получать не менее 500 г углеводов.

Сегодня на уроке мы должны систематизировать знания об углеводах, как о классе органических соединений, особенностях их строения и свойств. И начнём мы с определения и классификации.

Введение знаний.

Углеводы - кислородсодержащие органические вещества, большинство которых отвечает общей формулеС n (H 2 O ) m .

Т.е. углеводы как бы состоят из углерода и воды, отсюда и название класса. Это название появилось на основе элементного анализа первых известных углеводов. В дальнейшем было установлено, что существуют углеводы, в молекулах которых не соблюдается указанное соотношение, например дезоксирибоза C5H10O4. Известны также соединения, состав которых соответствует приведённой общей формуле, но они не принадлежат к классу углеводов (формальдегид, уксусная кислота). Однако название «углеводы» укоренилось и в настоящее время является общепризнанным.

Углеводы - это чрезвычайно разнообразный класс соединений, как по составу, так и по строению их молекул.

Классификация углеводов.

По способности к гидролизу углеводы можно разделить на 3 основные группы: моносахариды, олигосахариды, полисахариды.

Учащиеся записывают в тетради схему и примеры.

Моносахариды - углеводы, являющиеся по строению альдегидоспиртами или кетоноспиртами, которые не подвергаются гидролизу. В зависимости от числа атомов углерода делятся на триозы, тетрозы, пентозы, гексозы.

Примеры: глюкоза (виноградный сахар) C6H12O6 - белое кристаллическое вещество, содержится в соке винограда и других фруктах.

Использование ЭОР (можно продемонстрировать некоторые структурные формулы в качестве примера, формулы глюкозы и фруктозы лучше показать в разделах «строение»):

Фруктоза (фруктовый сахар) C6H12O6 - белое кристаллическое вещество, составляет значительную часть мёда.

Рибоза C5H10O5 - входит в состав РНК.

Полисахариды - это высокомолекулярные углеводы, построенные из остатков моносахаридов. Могут иметь разветвлённое и линейное строение.

Примеры: крахмал (C6H10O5)n - полисахарид, построенный из звеньев α-глюкозы, белый порошок, нерастворимый в холодной воде. В горячей воде набухает и образует крахмальный клейстер. Содержится в растениях и является ценным питательным веществом. Под воздействием ферментов в организме гидролизуется до глюкозы.

Использование ЭОР:

Трехмерная химическая формула: Крахмал № 103817

Целлюлоза (C6H10O5)n - полисахарид, построенный из звеньев β-глюкозы, твёрдое волокнистое вещество, нерастворимое в воде. Служит «строительным материалом» для стенок растительной клетки, является самым распространённым органическим веществом на Земле. Применяется для изготовления хлопчатобумажных тканей и бумаги.

Изучение моносахаридов продолжим на примере глюкозы.

Нахождение в природе (проводится фронтальная беседа).

В свободном виде глюкоза содержится почти во всех органах зеленых растений. Особенно её много в соке винограда (отсюда название «виноградный сахар»). Мёд в основном состоит из смеси глюкозы и фруктозы. Также глюкоза содержится цветочном нектаре, некоторых фруктах и овощах.

В крови человека и животных содержится около 0,1% глюкозы (80 - 120 мг в 100 мл крови). Превышение содержания глюкозы в крови уровня 180 мг на 100 мл крови свидетельствует о нарушении углеводного обмена и развитии сахарного диабета.

Исследование строения глюкозы.

К демонстрационному столу вызывается 1 учащийся, которому будет предложено решить экспериментальную задачу:

Докажите опытным путем с помощью предложенных реактивов (растворы CuSO4, NaOH), что виноградный сок содержит глюкозу. Проведите соответствующие химические реакции, отметьте их признаки. Какое строение молекулы глюкозы доказывают проведенные реакции?

В это время остальные учащиеся смотрят видеофрагмент «Определение глюкозы в виноградном соке» (использование ЦОР: видеофрагмент № 54862)

В процессе выполнения эксперимента и просмотра видеофрагмента учащиеся должны сделать вывод о том, что в состав глюкозы входят функциональные группы многоатомных спиртов (гидроксогруппа -ОН) и альдегидов (альдегидная группа).

Строение глюкозы.

Простейшая формула глюкозы: СН2О

Молекулярная формула глюкозы: С6Н12О6

М(С6Н12О6)=180 г/моль

Трехмерные химические формулы:

Получение глюкозы:

В природе глюкоза образуется в результате фотосинтеза:

6CO2+6H2O=C6H12O6+6O2-Q

(к доске вызывается 1 учащийся, который записывает уравнение реакции на доске, остальные делают это в тетради).

Первый синтез простейших углеводов из формальдегида был произведён А. М. Бутлеровым в 1861 г.: HCOH → C6H12O6

(уравнение демонстрируется учителем в презентации)

На производстве глюкозу получают гидролизом крахмала в присутствии серной кислоты:

(C6H10O5)n + nH2O nC6H12O6 (уравнение демонстрируется учителем в презентации).

Физические свойства глюкозы:

Вопрос классу: Какие физические свойства глюкозы вам известны?

Глюкоза - бесцветное кристаллическое вещество со сладким вкусом, хорошо растворяется в воде. Из водного раствора она выделяется в виде кристаллогидрата: С6H12O6 ∙ (H2O)n. По сравнению со свекловичным сахаром она менее сладкая.

Химические свойства глюкозы:

Гликолиз:

Вопрос классу:

Из курса биологии вы знаете, что глюкоза является своеобразным аккумулятором солнечной энергии. Поразмышляйте, что происходит с глюкозой в организме человека?

Около 70% глюкозы, содержащейся в крови человека, подвергается в тканях медленному окислению с выделением энергии и образованием конечных продуктов - углекислого газа и воды.

C6H12O6 + 6O2 → 6CO2 + 6H2O + 2920 кДж (уравнение записывается одним из учащихся на доске)

Энергия, выделяемая при гликолизе, в значительной степени обеспечивает энергетические потребности живых организмов.

Свойства глюкозы как многоатомного спирта:

Глюкоза даёт качественную реакцию многоатомных спиртов - со свежеполученным гидроксидом меди (II) образует ярко-синий раствор.

Проверка знаний (подведение итогов обучения).

(проводится фронтальный опрос).

Трехмерные химические формулы:

Глюкоза (линейная форма) (№104073)