Основные функции антител. Антитела: классификация и функции Защитное действие сывороточных антител

В ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

История изучения

Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в это время о природе обнаруженного столбнячного антитоксина, кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тизелиуса и Кабата, начинается изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

Строение антител

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C H1 , шарнира, C H2 и C H3 доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L и C L доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA) так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε-и μ- цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Классификация по тяжелым цепям

Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

  • величиной
  • зарядом
  • последовательностью аминокислот
  • содержанием углеводов

Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

  • распознает и связывает антиген, а затем
  • усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет ее антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка, полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

Клонально-селекционная теория :

  1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
  2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
  3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
  4. Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

Вариабельность антител

Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

  • Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
  • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;
  • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

Контроль пролиферации

Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит ее ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM, усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

  • А. Ройт, Дж. Брюсстофф, Д. Мейл. Иммунология- М.: Мир, 2000 - ISBN 5-03-003362-9
  • Иммунология в 3 томах / Под. ред. У. Пола.- М.:Мир, 1988
  • В. Г. Галактионов. Иммунология- М.: Изд. МГУ, 1998 - ISBN 5-211-03717-0

См. также

  • Абзимы - каталитически активные антитела
  • Авидность , аффинность - характеристики связывания антигена и антитела

Связывающую и эффекторную (вызывают тот или иной иммунный ответ , например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками , которыми становятся некоторые В-лимфоциты, в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких и двух тяжёлых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

Энциклопедичный YouTube

  • 1 / 5

    Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в то время о природе обнаруженного столбнячного антитоксина, кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тиселиуса и Кабата, началось изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

    Строение антител

    Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C Н 1, шарнира, C H 2- и C H 3-доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L - и C L - доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA), так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε- и μ-цепи) и два типа легких цепей (κ-цепь и λ-цепь).

    Классификация по тяжелым цепям

    Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

    • последовательностью аминокислот
    • молекулярной массой
    • зарядом

    Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

    Функции антител

    Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

    • распознает и связывает антиген, а затем
    • усиливает уничтожение и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

    Одна область молекулы антител (Fab) определяет её антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

    Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

    Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

    Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

    Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка, полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

    Клонально-селекционная теория :

    1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
    2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
    3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
    4. Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

    Вариабельность антител

    Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

    • Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
    • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;
    • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

    Контроль пролиферации

    Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит её ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

    1. Опсонизация (иммунный фагоцитоз).

    2. Антитоксический эффект.

    3. Активация комплемента.

    4. Нейтрализация.

    5. Циркулирующие комплексы (связанные растворимые Аг образуют комплесы с Ат, которые выводятся из организма с желчью и мочой).

    6. Антителозависимая цитотоксичность.

    Динамика антителообразования.

    Серологические реакции в лабораторной диагностике инфекционных заболеваний.

    В защите организма от чужеродных антигенов решающую роль играют иммунологические механизмы, осуществляющиеся антителами и иммунокомпетентными клетками. Основа иммунологических механизмов – специфическая реакция между антителами или лимфоцитами (образовавшихся под воздействием попавшего в организм антигена) и антигена. Главная функция антител – связывание антигена и его дальнейшее выведение из организма.

    Однако такие реакции между антителами и антигенами могут происходить и вне организма (in vitro) в присутствии электролита и возможны лишь при наличии комплементарности (структурного сходства, сродства) антигена и антитела.

    Имея специфические антитела против определенного антигена можно распознать и выявить его среди других антигенов, а в сыворотке крови антитела против известного антигена.

    Реакция антиген-антитело in vitro сопровождается возникновением определенного феномена – агглютинации, преципитации, лизиса.

    Таким образом все серологические реакции используются с двумя целями:

      выявление антител в сыворотке больного с помощью стандартных антигенов-диагностикумов (для серологической диагностики инфекционных болезней );

      для выявления неизвестных антигенов по известным стандартным сывороткам, содержащим антитела определенной специфичности (для серологической идентификации возбудителей ).

    Например, если сыворотка больного реагирует с конкретным микробным антигеном – значит в сыворотке больного есть антитела против данного микроорганизма.

    Серологическая диагностика – берут стандартный антиген (диагностикум), представляющий собой инактивированные или живые бактерии, вирусы или же их антигены (компоненты) в изотоническом растворе.

    Серологическая идентификация – используют стандартные иммунные сыворотки, которые получают от иммунизированных животных (в крови животных в результате многократной иммунизации возбудителем появляется большое количество антител).

    Агглютинация.

    Агглютинация – серологическая реакция между антителами (агглютининами) и антигенами (агглютининогенами), размещенными на поверхности бактериальной клетки, а в результате образуется комплекс антиген-антитело (агглютинат).

    Механизм агглютинации – под влиянием ионов электролита уменьшается негативный поверхностный заряд бактериальной клетки и следовательно они могут сблизиться на такое расстояние при котором возникает склеивание бактерий.

    Макро- и микроскопический вид агглютината :

      О-агглютинация (соматическая) – мелкозернистая, при микроскопии – бактерии склеиваются полюсами клеток, образуя сеть.

      Vi-агглютинация (капсульная) – мелкозернистая, при микроскопии - склеивание бактерий происходит всей поверхностью клетки.

      Н-агглютинация (жгутиковая) – агглютинины взаимодействуют с жгутиками обездвиживая бактерии, при микроскопии – крупнохлопчатая, склеивание бактериальных клеток в области жгутиков.


    Реакция агглютинации используется для определения антител в сыворотке крови больных, например, при бруцеллезе (реакции Райта, Хеддельсона), брюшном тифе и паратифах (реакция Видаля) других инфекционных болезнях, а также при определении возбудителя, выделенного от больного. Эту же реакцию применяют для определения групп крови с использованием моноклональных антител против аллоантигенов эритроцитов.

    Применяются различные варианты реакции агглютинации: развернутая, ориентировочная, непрямая и др.

    Для определения у больного антител ставят развернутую реакцию агглютинации : к разведениям сыворотки крови больного добавляют взвесь убитых микробов (диагностикум) и через несколько часов инкубации при 37°С отмечают наибольше разведение (титр) сыворотки, при котором произошла агглютинация, т.е. образовался осадок.

    Характер и скорость агглютинации зависят от вида антигена и антител.

    Если необходимо определить возбудитель, выделенный от больного, ставят ориентировочную реакцию агглютинации, применяя диагностические антитела, т.е. проводят серотипирование возбудителя. Ориентировочную реакцию проводят на предметном стекле. К 1 капле диагностической иммунной сыворотки в разведении 1:10 или 1:20 добавляют чистую культуру возбудителя, выделенного от больного. Если появляется хлопьевидный осадок, то реакцию проводят в пробирках с увеличивающимися разведениями диагностической сыворотки, добавлял в каждую дозу сыворотки 2-З капли взвеси возбудителя. Реакцию считают положительной, если агглютинация отмечается в разведении, близком к титру диагностической сыворотки. В контролях (сыворотка, разведенная изотоническим раствором хлорида натрия, или взвесь микробов в том же растворе) осадок в виде хлопьев должен отсутствовать.

    Разные родственные бактерии могут агглютинироваться одной и той же диагностической агглютинирующей сывороткой, что затрудняет их идентификацию. Поэтому пользуются адсорбированными агглютинирующими сыворотками, из которых удалены перекрестно реагирующие антитела путем адсорбции их родственными бактериями. В таких сыворотках сохраняются антитела, специфичные только к данной бактерии. Получение таким способом монорецепторных диагностических агглютинирующих сывороток было предложено А.Кастелляни (1902). Реакция непрямой (пассивной) гемагглютинации (РНГА) основана на использовании эритроцитов (или латекса) с адсорбированными на их поверхности антигенами или антителами, взаимодействие которых с соответствующими антителами или антигенами сыворотки крови больных вызывает склеивание и выпадение эритроцитов на дно пробирки или ячейки в виде фестончатого осадка. РНГА применяют для диагностики инфекционных болезней, определения гонадотропного гормона в моче при установлении беременности, для выявления повышенной чувствительности к лекарственным препаратам и гормонам и в некоторых других случаях. Реакция торможения гемагглютинации (РТГА) основана на блокаде, подавлении вирусов антителами иммунной сыворотки, в результате чего вирусы теряют свойство агглютинировать эритроциты. РТГА применяют для диагностики многих вирусных болезней, возбудители которых (вирусы гриппа, кори, краснухи, клещевого энцефалита и др.) могут агглютинировать эритроциты различных животных. Реакцию агглютинации для определения групп крови применяют для установления системы АВО с помощью РА эритроцитов, используя антитела к группам крови А(II), В(III). Контролем служит сыворотка, не содержащая антител, т.е. АВ(IV) группы крови, антигены, содержащиеся в эритроцитах групп А(II), В(III); отрицательный контроль не содержит антигенов, т.е. используют эритроциты группы 0 (I). В реакции агглютинации для определения резус-фактора используют антирезусные сыворотки (не менее двух различных серий). При наличии на мембране исследуемых эритроцитов резус-антигена происходит агглютинация этих клеток. Контролем служат стандартные резус-положительные и резус-отрицательные эритроциты всех групп крови.

    Реакцию агглютинации для определения антирезусных антител (непрямую реакцию Кумбса) применяют у больных при внутрисосудистом гемолизе. У некоторых таких больных обнаруживают антирезусные антитела, которые являются неполными. Они специфически взаимодействуют с резус-положительными эритроцитами, но не вызывают их агглютинации. Наличие таких неполных антител определяют в непрямой реакции Кумбса. Для этого в систему антирезусные антитела + резус-положительные эритроциты добавляют антиглобулиновую сыворотку (антитела против иммуноглобулинов человека), что вызывает агглютинацию эритроцитов. С помощью реакции Кумбса диагностируют: патологические состояния, связанные с внутрисосудистым лизисом эритроцитов иммунного генеза, например гемолитическую болезнь новорожденных: эритроциты резус-положительного плода соединяются с циркулирующими в крови неполными антителами к резус-фактору, которые перешли через плаценту от резус-отрицательной матери.

    Реакция коагглютинации - разновидность РА: клетки возбудителя определяют с помощью стафилококков, предварительно обработанных иммунной диагностической сывороткой. Стафилококки, содержащие белокА, имеющий сродство к иммуноглобулинам, неспецифически адсорбируют антимикробные антитела, которые затем взаимодействуют активными центрами с соответствующими микробами, выделенными от больных. В результате коагглютинации образуются хлопья, состоящие из стафилококков, антител диагностической сыворотки и определяемого микроба.

    В ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

    Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

    История изучения

    Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в это время о природе обнаруженного столбнячного антитоксина, кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тизелиуса и Кабата, начинается изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

    Строение антител

    Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C H1 , шарнира, C H2 и C H3 доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L и C L доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA) так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε-и μ- цепи) и два типа легких цепей (κ-цепь и λ-цепь).

    Классификация по тяжелым цепям

    Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

    • величиной
    • зарядом
    • последовательностью аминокислот
    • содержанием углеводов

    Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

    Функции антител

    Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

    • распознает и связывает антиген, а затем
    • усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

    Одна область молекулы антител (Fab) определяет ее антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

    Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

    Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

    Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

    Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка, полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

    Клонально-селекционная теория :

    1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
    2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
    3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
    4. Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

    Вариабельность антител

    Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

    • Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
    • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;
    • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

    Контроль пролиферации

    Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит ее ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM, усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

    • А. Ройт, Дж. Брюсстофф, Д. Мейл. Иммунология- М.: Мир, 2000 - ISBN 5-03-003362-9
    • Иммунология в 3 томах / Под. ред. У. Пола.- М.:Мир, 1988
    • В. Г. Галактионов. Иммунология- М.: Изд. МГУ, 1998 - ISBN 5-211-03717-0

    См. также

    • Абзимы - каталитически активные антитела
    • Авидность , аффинность - характеристики связывания антигена и антитела

    Выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

    История изучения

    Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в то время о природе обнаруженного столбнячного антитоксина , кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тиселиуса и Кабата, началось изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

    Строение антител

    Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C Н 1, шарнира, C H 2- и C H 3-доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L - и C L - доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA), так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε- и μ-цепи) и два типа легких цепей (κ-цепь и λ-цепь).

    Классификация по тяжелым цепям

    Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

    • последовательностью аминокислот
    • молекулярной массой
    • зарядом

    Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

    Функции антител

    Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

    • распознает и связывает антиген, а затем
    • усиливает уничтожение и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

    Одна область молекулы антител (Fab) определяет её антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

    Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

    Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

    Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

    Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка , полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

    Клонально-селекционная теория :

    1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
    2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
    3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
    4. Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

    Вариабельность антител

    Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

    • Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
    • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;
    • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

    Контроль пролиферации

    Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит её ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

    Обручения не было и никому не было объявлено о помолвке Болконского с Наташей; на этом настоял князь Андрей. Он говорил, что так как он причиной отсрочки, то он и должен нести всю тяжесть ее. Он говорил, что он навеки связал себя своим словом, но что он не хочет связывать Наташу и предоставляет ей полную свободу. Ежели она через полгода почувствует, что она не любит его, она будет в своем праве, ежели откажет ему. Само собою разумеется, что ни родители, ни Наташа не хотели слышать об этом; но князь Андрей настаивал на своем. Князь Андрей бывал каждый день у Ростовых, но не как жених обращался с Наташей: он говорил ей вы и целовал только ее руку. Между князем Андреем и Наташей после дня предложения установились совсем другие чем прежде, близкие, простые отношения. Они как будто до сих пор не знали друг друга. И он и она любили вспоминать о том, как они смотрели друг на друга, когда были еще ничем, теперь оба они чувствовали себя совсем другими существами: тогда притворными, теперь простыми и искренними. Сначала в семействе чувствовалась неловкость в обращении с князем Андреем; он казался человеком из чуждого мира, и Наташа долго приучала домашних к князю Андрею и с гордостью уверяла всех, что он только кажется таким особенным, а что он такой же, как и все, и что она его не боится и что никто не должен бояться его. После нескольких дней, в семействе к нему привыкли и не стесняясь вели при нем прежний образ жизни, в котором он принимал участие. Он про хозяйство умел говорить с графом и про наряды с графиней и Наташей, и про альбомы и канву с Соней. Иногда домашние Ростовы между собою и при князе Андрее удивлялись тому, как всё это случилось и как очевидны были предзнаменования этого: и приезд князя Андрея в Отрадное, и их приезд в Петербург, и сходство между Наташей и князем Андреем, которое заметила няня в первый приезд князя Андрея, и столкновение в 1805 м году между Андреем и Николаем, и еще много других предзнаменований того, что случилось, было замечено домашними.
    В доме царствовала та поэтическая скука и молчаливость, которая всегда сопутствует присутствию жениха и невесты. Часто сидя вместе, все молчали. Иногда вставали и уходили, и жених с невестой, оставаясь одни, всё также молчали. Редко они говорили о будущей своей жизни. Князю Андрею страшно и совестно было говорить об этом. Наташа разделяла это чувство, как и все его чувства, которые она постоянно угадывала. Один раз Наташа стала расспрашивать про его сына. Князь Андрей покраснел, что с ним часто случалось теперь и что особенно любила Наташа, и сказал, что сын его не будет жить с ними.
    – Отчего? – испуганно сказала Наташа.
    – Я не могу отнять его у деда и потом…
    – Как бы я его любила! – сказала Наташа, тотчас же угадав его мысль; но я знаю, вы хотите, чтобы не было предлогов обвинять вас и меня.
    Старый граф иногда подходил к князю Андрею, целовал его, спрашивал у него совета на счет воспитания Пети или службы Николая. Старая графиня вздыхала, глядя на них. Соня боялась всякую минуту быть лишней и старалась находить предлоги оставлять их одних, когда им этого и не нужно было. Когда князь Андрей говорил (он очень хорошо рассказывал), Наташа с гордостью слушала его; когда она говорила, то со страхом и радостью замечала, что он внимательно и испытующе смотрит на нее. Она с недоумением спрашивала себя: «Что он ищет во мне? Чего то он добивается своим взглядом! Что, как нет во мне того, что он ищет этим взглядом?» Иногда она входила в свойственное ей безумно веселое расположение духа, и тогда она особенно любила слушать и смотреть, как князь Андрей смеялся. Он редко смеялся, но зато, когда он смеялся, то отдавался весь своему смеху, и всякий раз после этого смеха она чувствовала себя ближе к нему. Наташа была бы совершенно счастлива, ежели бы мысль о предстоящей и приближающейся разлуке не пугала ее, так как и он бледнел и холодел при одной мысли о том.
    Накануне своего отъезда из Петербурга, князь Андрей привез с собой Пьера, со времени бала ни разу не бывшего у Ростовых. Пьер казался растерянным и смущенным. Он разговаривал с матерью. Наташа села с Соней у шахматного столика, приглашая этим к себе князя Андрея. Он подошел к ним.
    – Вы ведь давно знаете Безухого? – спросил он. – Вы любите его?
    – Да, он славный, но смешной очень.
    И она, как всегда говоря о Пьере, стала рассказывать анекдоты о его рассеянности, анекдоты, которые даже выдумывали на него.
    – Вы знаете, я поверил ему нашу тайну, – сказал князь Андрей. – Я знаю его с детства. Это золотое сердце. Я вас прошу, Натали, – сказал он вдруг серьезно; – я уеду, Бог знает, что может случиться. Вы можете разлю… Ну, знаю, что я не должен говорить об этом. Одно, – чтобы ни случилось с вами, когда меня не будет…
    – Что ж случится?…
    – Какое бы горе ни было, – продолжал князь Андрей, – я вас прошу, m lle Sophie, что бы ни случилось, обратитесь к нему одному за советом и помощью. Это самый рассеянный и смешной человек, но самое золотое сердце.
    Ни отец и мать, ни Соня, ни сам князь Андрей не могли предвидеть того, как подействует на Наташу расставанье с ее женихом. Красная и взволнованная, с сухими глазами, она ходила этот день по дому, занимаясь самыми ничтожными делами, как будто не понимая того, что ожидает ее. Она не плакала и в ту минуту, как он, прощаясь, последний раз поцеловал ее руку. – Не уезжайте! – только проговорила она ему таким голосом, который заставил его задуматься о том, не нужно ли ему действительно остаться и который он долго помнил после этого. Когда он уехал, она тоже не плакала; но несколько дней она не плача сидела в своей комнате, не интересовалась ничем и только говорила иногда: – Ах, зачем он уехал!