Сто и классическая механика. Специальная теория относительности

Специальная теория относительности (СТО) или частная теория относительности – это теория Альберта Эйнштейна, опубликованная в 1905 году в работе «К электродинамике движущихся тел» (Albert Einstein - Zur Elektrodynamik bewegter Körper. Annalen der Physik, IV. Folge 17. Seite 891-921. Juni 1905).

Она объясняла движение между разными инерциальными системами отсчёта или движение тел, двигающихся в отношении друг друга с неизменной скоростью. В этом случае ни один из объектов не должен приниматься за систему отсчёта, а рассматривать их надо относительно друг друга. СТО предусматривает только 1 случай, когда 2 тела не изменяют направление движения и двигаются равномерно.

Законы СТО перестают действовать, когда одно из тел изменяет траекторию движения или повышает скорость. Здесь имеет место общая теория относительности (ОТО), дающая общее толкование движения объектов.

Два постулата, на которых строится теория относительности:

  1. Принцип относительности - Согласно ему, во всех существующих системах отсчета, которые двигаются в отношении друг друга с неизменяющейся скоростью и не меняют направление, действуют одни и те же законы.
  2. Принцип скорости света - Скорость света одинакова для всех наблюдателей и не имеет зависимость от скорости их движения. Это высшая скорость, и ничто в природе не имеет большую скорость. Световая скорость равна 3*10^8 м/с.

Альберт Эйнштейн за основу брал экспериментальные, а не теоретические данные. Это явилось одной из составляющих его успеха. Новые экспериментальные данные послужили базой для создания новой теории.

Физики с середины XIX века занимались поиском новой загадочной среды, названной эфиром. Полагалось, что эфир может проходить через все объекты, но не участвует в их движении. Согласно убеждениям об эфире, изменяя скорость зрителя в отношении эфира, меняется и скорость света.

Эйнштейн, доверяя экспериментам, отверг понятие новой среды эфира и допустил, что скорость света всегда является постоянной и не зависит от любых обстоятельств, таких как скорость самого человека.

Временные промежутки, расстояния, и их однородность

Специальная теория относительности связывает временные промежутки и пространство. В Материальной вселенной существует 3 известных в пространстве: вправо и влево, вперед и назад, вверх и вниз. Если добавить к ним другое измерение, названное временным, то это составит основу пространственно-временного континуума.

Если Вы осуществляете движение с малой скоростью, ваши наблюдения не будут сходиться с людьми, которые двигаются быстрее.

Позже эксперименты подтвердили, что пространство, так же как и время, не может восприниматься одинаково: от скорости движения объектов зависит наше восприятие.

Соединение энергии с массой

Эйнштейн вывел формулу, которая соединила в себе энергию с массой. Эта формула получила широкое распространение в физике, и она знакома каждому ученику: E=m*c² , в которой E-энергия; m- масса тела, c-скорость распространения света.

Масса тела возрастает пропорционально увеличению скорости света. Если достигнуть скорости света, масса и энергия тела становятся безразмерными.

Увеличивая массу объекта, становится сложнее достичь увеличения его скорости, т. е для тела с бесконечно огромной материальной массой необходима бесконечная энергия. Но на деле этого достичь нереально.

Теория Эйнштейна объединила два отдельных положения: положение массы и положение энергии в один общий закон. Это сделало возможным преобразование энергии в материальную массу и наоборот.

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.

В первую очередь в СТО, как и в классической механике, предполагается, что пространство и время однородны, а пространство также изотропно. Если быть более точным (современный подход) инерциальные системы отсчета собственно и определяются как такие системы отсчета, в которых пространство однородно и изотропно, а время однородно. По сути существование таких систем отсчета постулируется.

Постулат 1 (принцип относительности Эйнштейна ). Любое физическое явление протекает одинаково во всех инерциальных системах отсчёта. Это означает, что форма зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО.

Учитывая второй закон Ньютона (или уравнения Эйлера-Лагранжа в лагранжевой механике), можно утверждать, что если скорость некоторого тела в данной ИСО постоянна (ускорение равно нулю), то она должна быть постоянна и во всех остальных ИСО. Иногда это и принимают за определение ИСО.

Постулат 2 (принцип постоянства скорости света ). Скорость света в «покоящейся» системе отсчёта не зависит от скорости источника.

Принцип постоянства скорости света противоречит классической механике, а конкретно - закону сложения скоростей. При выводе последнего используется только принцип относительности Галилея и неявное допущение одинаковости времени во всех ИСО. Таким образом, из справедливости второго постулата следует, что время должно бытьотносительным - неодинаковым в разных ИСО. Необходимым образом отсюда следует и то, что "расстояния" также должны быть относительны. В самом деле, если свет проходит расстояние между двумя точками за некоторое время, а в другой системе - за другое время и притом с той же скоростью, то отсюда непосредственно следует, что и расстояние в этой системе должно отличаться.

27. Зако́н Куло́на - это закон, описывающий силы взаимодействия между точечными электрическими зарядами. Современная формулировка: Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы. Кулона закон записывается следующим образом:

где - сила, с которой заряд 1 действует на заряд 2;- величина зарядов;- радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами -);- коэффициент пропорциональности.

    Ёмкость - внутренний объём сосуда, вместимость, то есть максимальный объём помещающейся внутрь него жидкости.

36 . Правила Кирхгофа (часто, в литературе, называются не совсем корректно Зако́ны Кирхго́фа ) - соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного и квазистационарного тока. Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей. Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений, и соответственно, найти значение токов на всех ветвях цепи и все межузловые напряжения.

Для формулировки правил Кирхгофа вводятся понятия узел , ветвь и контур электрической цепи. Ветвью называют любой двухполюсник, входящий в цепь, Узлом называют точку соединения трех и более ветвей, Контур - замкнутый цикл из ветвей. Термин замкнутый цикл означает, что, начав с некоторого узла цепи и однократно пройдя по нескольким ветвям и узлам, можно вернуться в исходный узел. Ветви и узлы, проходимые при таком обходе, принято называть принадлежащими данному контуру. При этом нужно иметь в виду, что ветвь и узел могут принадлежать одновременно нескольким контурам.

В терминах данных определений правила Кирхгофа формулируются следующим образом.

Первое правило

Первое правило Кирхгофа гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий - отрицательным:

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда

Специальная теория относительности Эйнштейна (СТО) расширяет границы классической ньютоновской физики, действующей в области нерелятивистских скоростей, малых по сравнению со скоростью света с, на любые, в том числе релятивистские, т.е. сравнимые с с, скорости. Все результаты релятивистской теории при переходят в результаты классической нерелятивистской физики (принцип соответствия).

Постулаты СТО. Специальная теория относительности опирается на два постулата:

Первый постулат (принцип относительности Эйнштейна): все физические законы - как механические, так и электромагнитные - имеют одинаковый вид во всех инерциальных системах отсчета (ИСО). Иными словами, никакими опытами нельзя выделить какую-то одну систему отсчета и назвать именно ее покоящейся. Этот постулат является расширением принципа относительности Галилея (см. разд. 1.3) на электромагнитные процессы.

Второй постулат Эйнштейна: скорость света в вакууме одинакова для всех ИСО и равна с Этот постулат содержит сразу два утверждения:

а) скорость света не зависит от скорости источника,

б) скорость света не зависит от того, в какой ИСО находится наблюдатель с приборами, т.е. не зависит от скорости приемника.

Постоянство скорости света и независимость ее от движения источника следуют из уравнений электромагнитного поля Максвелла. Казалось очевидным, что такое утверждение может быть верным только в одной системе отсчета. С точки зрения классических представлений о пространстве - времени, любой другой наблюдатель, двигаясь со скоростью должен для встречного луча получить скорость а для испущенного вперед луча - скорость . Такой результат означал бы, что уравнения Максвелла выполняются только в одной ИСО, заполненной неподвижным «эфиром, относительно которого и распространяются световые волны. Однако попытка обнаружить изменение скорости света, связанное с движением Земли относительно эфира, дала отрицательный результат (опыт Майкельсона- Морли). Эйнштейн предположил, что уравнения Максвелла, как и все законы физики, имеют один и тот же вид во всех ИСО, т.е. что скорость света в любой ИСО равна с (второй постулат). Это предположение привело к пересмотру основных представлений о пространстве - времени.

Преобразования Лоренца. Преобразования Лоренца связывают между собой координаты и время события, измеренные в двух ИСО, одна из которых движется относительно другой с постоянной скоростью V. При таком же выборе осей координат и отсчета времени, как в преобразованиях Галилея (формула (7)), преобразования Лоренца имеют вид:

Часто удобно пользоваться преобразованиями для разности координат и времен двух событий:

где для краткости введено обозначение

Преобразования Лоренца переходят в преобразования Галилея при . Они выводятся из второго постулата СТО и из требования линейности преобразований, выражающего условие однородности пространства. Обратные преобразования из в К можно получить из (42), (43) заменой V на -V:

Сокращение длины. Длина движущегося отрезка определяется как расстояние между точками, где концы отрезка находились одновременно (т.е. Рассмотрим твердое тело, которое движется поступательно со скоростью и свяжем с ним систему отсчета Из уравнения (43) (в котором надо положить получим, что продольные размеры движущегося тела сокращаются:

где - собственный продольный размер, т.е. измеренный в системе отсчета К, в которой тело неподвижно. Поперечные размеры движущегося тела не изменяются.

Пример 1. Если квадрат движется со скоростью вдоль одной из своих сторон, то он превращается в прямоугольник с углом между диагоналями, равным .

Относительность хода времени. Из преобразований Лоренца видно, что время протекает по-разному в разных ИСО. В частности, события, происходящие в системе К одновременно но

в разных точках пространства, в К могут быть не одновременными: может быть как положительным, так и отрицательным (относительность одновременности). Часы, движущиеся вместе с системой отсчета (т.е. неподвижные относительно или показывают собственное время этой ИСО. С точки зрения наблюдателя в системе А, эти часы отстают от его собственных (замедление хода времени). Рассматривая два отсчета движущихся часов как два события, из (45) получим:

где - собственное время движущихся часов (точнее, связанной с ними Равноправие всех ИСО проявляется в том, что с точки зрения наблюдателя К часы, неподвижные относительно , будут отставать от его собственных. (Заметим, что для контроля за движущимися часами неподвижный наблюдатель в разные моменты времени использует разные часы.) Парадокс близнецов заключается в том, что СТО предсказывает различие в возрасте двух близнецов, один из которых оставался на Земле, а другой путешествовал в глубоком космосе (космонавт будет моложе); казалось бы, это нарушает равноправие их систем отсчета. На самом деле, только земной близнец все время находился в одной ИСО, космонавт же поменял ИСО для возвращения на Землю (его же собственная система отсчета неинерциальна).

Пример 2. Среднее собственное время жизни нестабильного мюона , т.е. Благодаря эффекту замедления времени, с точки зрения земного наблюдателя космический мюон, летящий со скоростью близкой к скорости света (7 1), живет в среднем пролетает от места рождения в верхних слоях атмосферы расстояние порядка что позволяет регистрировать его на поверхности Земли.

Сложение скоростей в СТО. Если частица движется со скоростью относительно то ее скорость относительно К можно найти, выразив из (45) и подставив в

При с происходит переход к нерелятивистскому закону сложения скоростей (формула Важное свойство формулы (48) состоит в том, что если V и меньше с, то и будет меньше с. Например, если мы разгоним частицу до а затем, перейдя в ее систему отсчета, снова разгоним ее до то результирующая скорость окажется не Видно, что превзойти скорость света не удается. Скорость света является максимально возможной скоростью передачи взаимодействий в природе.

Интервал. Причинность. Преобразования Лоренца не сохраняют ни величину интервала времени, ни длину пространственного отрезка. Однако можно показать, что при преобразованиях Лоренца сохраняется величина

где называется интервалом между событиями 1 и 2 . Если то интервал между событиями называют времениподобным, так как в этом случае существует ИСО, в которой т.е. события происходят в одном месте, но в разное время. Такие события могут быть причинно связанными. Если, наоборот, то интервал между событиями называют пространственно-подобным, так как в этом случае существует ИСО, в которой т.е. события происходят одновременно в разных точках пространства. Между такими событиями не может существовать причинной связи. Условие означает, что луч света, испущенный в момент более раннего события (например, из точки не успевает достигнуть точки к моменту времени События, отделенные от события 1 времениподобным интервалом, представляют по отношению к нему или абсолютное прошлое или абсолютное будущее порядок следования этих событий одинаковый во всех ИСО. Порядок следования событий, отделенных пространственноподобным интервалом, может быть разным в разных ИСО.

Лоренцовы 4-векторы. Четверка величин которые при переходе из системы К в систему К преобразуются так же, как т.е. (см. (42)):

называется лоренцовым четырехмерным вектором (или, коротко, лоренцовым -вектором). Величины называются пространственными компонентами -вектора, - его временной компонентой. Сумма двух -векторов и произведение -вектора на число - тоже -векторы. При изменении ИСО сохраняется величина, аналогичная интервалу: а также скалярное произведение Физическое равенство, записанное в виде равенства двух -векторов, остается верным во всех ИСО.

Импульс и энергия в СТО. Компоненты скорости преобразуются не так, как компоненты 4-вектора (сравните уравнения (48) и (50)), потому что в выражении преобразуются как числитель, так и знаменатель. Поэтому величина соответствующая классическому определению импульса, не может сохраняться во

всех ИСО. Релятивистский -вектор импульса определяют как

где - бесконечно малое изменение собственного времени частицы (см. (47)), т.е. измеренное в ИСО, скорость которой равна скорости частицы в данный момент не зависит от того, из какой ИСО мы наблюдаем за частицей.) Пространственные компоненты -вектора образуют релятивистский импульс

а временная компонента оказывается равной где Е - релятивистская энергия частицы:

Релятивистская энергия включает в себя все виды внутренней энергии.

Пример 3. Пусть энергия покоящегося тела увеличилась на Найти импульс этого тела в системе отсчета, движущейся со скоростью .

Решение. В соответствии с формулами релятивистского преобразования (54) импульс равен Видно, что увеличение массы соответствует формуле (58).

Основной закон релятивистской динамики. Приложенная к частице сила равна, как и в классической механике, производной от импульса:

но релятивистский импульс (51) отличается от классического. Под действием приложенной силы импульс может неограниченно возрастать, но из определения (51) видно, что скорость будет меньше с. Работа силы (59)

равна изменению релятивистской энергии. Здесь были использованы формулы (см. (56)) и .

СТО, также известная как частная теория относительности является проработанной описательной моделью для отношений пространства-времени, движения и законов механики, созданная в 1905 году лауреатом Нобелевской премии Альбертом Эйнштейном.

Поступая на отделение теоретической физики Мюнхенского университета, Макс Планк обратился за советом к профессору Филиппу фон Жолли, руководившему в тот момент кафедрой математики этого университета. На что он получил совет: «в этой области почти всё уже открыто, и всё, что остаётся – заделать некоторые не очень важные проблемы». Юный Планк ответил, что он не хочет открывать новые вещи, а только хочет понять и систематизировать уже известные знания. В итоге из одной такой «не очень важной проблемы» впоследствии возникла квантовая теория, а из другой – теория относительности, за которые Макс Планк и Альберт Эйнштейн получили нобелевские премии по физике.

В отличие от многих других теорий, полагавшихся на физические эксперименты, теория Эйнштейна практически полностью была основана на его мысленных экспериментах и только впоследствии была подтверждена на практике. Так ещё в 1895 году (в возрасте всего 16 лет) он задумался о том, что будет, если двигаться параллельно лучу света с его скоростью? В такой ситуации получалось, что для стороннего наблюдателя частицы света должны были колебаться вокруг одной точки, что противоречило уравнениям Максвелла и принципу относительности (который гласил, что физические законы не зависят от места где вы находитесь и скорости с которой вы движетесь). Таким образом юный Эйнштейн пришёл к выводу, что скорость света должна быть недостижима для материального тела, а в основу будущей теории был заложен первый кирпичик.

Следующий эксперимент был проведён им в 1905 году и заключался в том, что на концах движущегося поезда находятся два импульсных источника света которые зажигаются в одно время. Для стороннего наблюдателя, мимо которого проходит поезд, оба этих события происходят одновременно, однако для наблюдателя, находящегося в центре поезда эти события будут казаться произошедшими в разное время, так как вспышка света из начала вагона придёт раньше, чем из его конца (в следствии постоянности скорости света).

Из этого он сделал весьма смелый и далеко идущий вывод, что одновременность событий является относительной. Полученные на основе этих экспериментов расчёты он опубликовал в работе «Об электродинамике движущихся тел». При этом для движущегося наблюдателя один из этих импульсов будет иметь большую энергию нежели другой. Для того чтобы в такой ситуации не нарушался закон сохранения импульса при переходе от одной инерциальной системы отсчёта к другой необходимо было чтобы объект одновременно с потерей энергии должен был терять и массу. Таким образом Эйнштейн пришёл к формуле характеризующую взаимосвязь массы и энергии E=mc 2 – являющейся, пожалуй, самой известной физической формулой на данный момент. Результаты этого эксперимента были опубликованы им позднее в том же году.

Основные постулаты

Постоянство скорости света – к 1907 году были произведены эксперименты по измерению с точностью ±30 км/с (что было больше орбитальной скорости Земли) не обнаружившие её изменения в ходе года. Это стало первым доказательством неизменности скорости света, которое в последствии было подтверждено множеством других экспериментов, как экспериментаторами на земле, так и автоматическими аппаратами в космосе.

Принцип относительности – этот принцип определяет неизменность физических законов в любой точке пространства и в любой инерциальной системе отсчёта. То есть в независимости от того движетесь ли вы со скоростью около 30 км/с по орбите Солнца вместе с Землёй или в космическом корабле далеко за её пределами – ставя физический эксперимент вы всегда будете приходить к одним и тем же результатам (если ваш корабль в это время не ускоряется или замедляется). Этот принцип подтверждался всеми экспериментами на Земле, и Эйнштейн разумно счёл этот принцип верным и для всей остальной Вселенной.

Следствия

Путём расчётов на основе этих двух постулатов Эйнштейн пришёл к выводу, что время для движущегося в корабле наблюдателя должно замедляться с увеличением скорости, а сам он вместе с кораблём должен сокращаться в размерах в направлении движения (для того чтобы скомпенсировать тем самым эффекты от движения и соблюсти принцип относительности). Из условия конечности скорости для материального тела вытекало также что правило сложения скоростей (имевшее в механике Ньютона простой арифметический вид) должно быть заменено более сложными преобразованиями Лоренца – в таком случае даже если мы сложим две скорости в 99% от скорости света мы получим 99,995% от этой скорости, но не превысим её.

Статус теории

Так как формирование из частной теории её общей версии у Эйнштейна заняло только 11 лет, экспериментов для подтверждения непосредственно СТО не проводилось. Однако в том же году, когда была опубликована Эйнштейн также опубликовал свои расчёты, объяснявшие смещение перигелия Меркурия с точностью до долей процентов, без необходимости введения новых констант и других допущений, которые требовались другим теориям, объяснявшим этот процесс. С тех пор правильность ОТО была подтверждена экспериментально с точностью до 10 -20 , а на её основе было сделано множество открытий, что однозначно доказывает правильность этой теории.

Первенство в открытии

Когда Эйнштейн опубликовал свои первые работы по специальной теории относительности и приступил к написанию её общей версии, другими учёными уже была открыта значительная часть формул и идей, заложенных в основе этой теории. Так скажем преобразования Лоренца в общем виде были впервые получены Пуанкаре в 1900 году (за 5 лет до Эйнштейна) и были названы так в честь Хендрика Лоренца получившего приближённую версию этих преобразований, хотя даже в этой роли его опередил Вольдемар Фогт.