Анатомо-физиологические и возрастные особенности системы крови. Анатомо-физиологические особенности крови и органов кровообращения у детей

Становление гемопоэза в антенатальном и постнатальном периодах.

Процесс внутриутробного кроветворения включает 3 этапа:

1. Желточный этап (мезобластический, ангиобластический). Начинается с 3-й продолжается до 9-й недели. Гемопоэз происходит в сосудах желточного мешка (из стволовых клеток образуются примитивные первичные эритробласты (мегалобласты), содержащие HbP.

2. Печеночный (гепатолиенальный) этап. Начинается с 6-й недели и продолжается почти до рождения. Вначале в печени происходит как мегалобластический, так и нормобластический эритропоэз, а с 7-го месяца происходит только нормобластический эритропоэз. Наряду с этим происходит гранулоцито-, мегакариоцито-, моноцито- и лимфоцитопоэз. С 11-й недели по 7-й месяц в селезенке присходит эритроцито-, гранулоцито-, моноцито- и лимфоцитопоэз.

3. Костно-мозговой (медуллярный, миелоидный) этап. Начинается с конца 3-го месяца и продолжается в постнатальном онтогенезе. В костном мозге всех костей (начиная с ключицы) из стволовых клеток происходит эритропоэз по нормобластическому типу, гранулоцито-, моноцито-, мегакариоцитопоз и лимфопоэз. Роль органов лимфопоэза в этот период выполняют селезенка, тимус, лимфоузлы, небные миндалины и пейеровы бляшки.

В постнатальной жизни основным кроветворным органом становится костный мозг. В нем содержится основная масса стволовых кроветворных клеток и осуществляется образование всех клеток крови. Интенсивность гемопоэза в остальных органах после рождения быстро снижается.

Особенности гемопоэза у ребёнка .

Особенности эритропоэза у ребенка.

У новорожденного ребёнка преобладает HbF, он обладает большим сродством к кислороду и легко отдаёт его тканям. Начиная с первых недель постнатальной жизни происходит резкое увеличение синтезаHbА, тогда как образование HbF резко снижается (приблизительно на 3% в неделю). К полугодовалому возрасту содержаниеHbAв крови составляет 95-98% (то есть, как у взрослого), тогда как концентрацияHbFне превышает 3%.

У новорожденного ребенка число эритроцитов в периферической крови достигает 710 12 /л, а уровень гемоглобина – 220 г/л. Повышенное число эритроцитов у новорожденного объясняется тем, что плод в утробе матери и во время родов испытывает состояние гипоксии, вызывающей в его крови увеличение содержания эритропоэтинов. Однако после рождения у ребенка возникает гипероксия (так как устанавливается внешнее дыхание), что приводит к снижению интенсивности эритропоэза (за счёт снижения выработки эритропоэтина), хотя в первые дни он остается на достаточно высоком уровне. Через несколько часов после рождения число эритроцитов и уровень гемоглобина даже возрастают, главным образом за счет сгущения крови, но уже к концу первых суток количество эритроцитов начинает падать. В дальнейшем содержание эритроцитов уменьшается на 5-7-й, а гемоглобина – на 10-й день жизни ребенка после массового гемолиза эритроцитов, сопровождающегося так называемой транзиторной гипербилирубинемией новорожденных, проявляющейся у части детей «физиологической желтухой». Столь быстрое снижение числа эритроцитов у новорождённого ребенка объясняется очень коротким периодом жизни красных кровяных телец плода (с ними ребенок появляется на свет) – всего 10-14 дней – и очень высокой степенью их разрушения, в 5-7 раз превышающей интенсивность гибели эритроцитов у взрослого. Однако в эти сроки происходит и быстрое образование новых эритроцитов.

Число ретикулоцитов у доношенных новорожденных детей колеблется в широких пределах и составляет от 0,8 до 4%. Более того, в периферической крови могут встречаться единичные нормобласты. Однако к 10 дню жизни ребёнка содержание ретикулоцитов не превышает 2%. К этому сроку в периферической крови нормобласты исчезают.

К 3 месяцу жизни ребёнка уровень гемоглобина и количество эритроцитов снижаются, достигая 100-130 г/л и 3,0 — 4,510 12 /л соответственно. Столь низкие цифры числа эритроцитов и уровня гемоглобина у грудных детей представляют так называемую «физиологическую анемию» или «эритробластопению младенцев» и редко сопровождаются клиническими проявлениями гипоксии. Резкое уменьшение содержания эритроцитов отчасти связано с гемолизом фетальных эритроцитов, срок жизни которых приблизительно в 2 раза меньше, чем у взрослого человека. Кроме того, у грудного ребёнка по сравнению с взрослыми интенсивность эритропоэза значительно снижена, что связано с пониженным образованием в этот период основного фактора эритропоэза – эритропоэтина. В дальнейшем содержание эритроцитов и гемоглобина может слегка возрастать или падать, или оставаться на одном и том же уровне до трёхлетнего возраста. Несмотря на то, что к десяти годам число эритроцитов и уровень гемоглобина постепенно растёт, колебания как в ту, так и в другую сторону сохраняются вплоть до полового созревания. К этому моменту отмечаются половые различия в нормативах красной крови.

Особенно резкие индивидуальные вариации в количестве эритроцитов и уровне гемоглобина наблюдаются в возрастные периоды от 1 года до 2-х лет, от 5 до 7 и от 12 до 15-ти лет, что, по-видимому, связано со значительными вариациями в темпах роста детей.

Значительно отличаются эритроциты новорождённого по размеру и форме: с первых часов жизни и до 5-7-го дня у детей отмечается макроцитоз и пойкилоцитоз. В крови выявляется много молодых незрелых крупных форм эритроцитов. В течение первых часов жизни у ребенка наблюдается резкое повышение количества ретикулоцитов (ретикулоцитоз) до 4-6%, что в 4-6 раз превышает число этих форм у взрослого. Кроме того, у новорождённого можно обнаружить эритробласты и нормобласты. Всё это указывает на интенсивность эритропоэза в первые дни жизни ребенка.

Эритроциты плода и новорожденного ребёнка, по сравнению с эритроцитами взрослых, более чувствительны к оксидантам, что может приводить к нарушению структуры мембраны, гемолизу и сокращению сроков их жизни. Эти явления объясняются снижением в эритроцитах сульфгидрильных групп и уменьшением содержания антиоксидантных ферментов. Однако к концу 1 недели жизни ребёнка функция антиоксидантной системы усиливается, возрастает активность таких ферментов, как глютатионпероксидаза, глютатионкаталаза, супероксиддисмутаза, что защищает структуры мембраны эритроцитов ребёнка от окисления и возможности дальнейшего разрушения. К этому сроку у большинства новорожденных заканчивается физиологическая желтуха.

На эритропоэз плода и особенно развивающегося ребёнка оказывают влияние те же факторы, что и у взрослого человека. В частности, железо в организме плоданакапливается на всём протяжении его развития, но особенно интенсивно этот процесс осуществляется в третьем триместре беременности. Материнское железо, переходя через плаценту, связывается с трансферрином плода и транспортируется в основном в печень. У плода имеется положительный запас железа, что обусловлено совершенными механизмами плаценты, позволяющими обеспечивать будущего ребёнка достаточным количеством железа даже при наличии железодефицитной анемии у беременной. К таким механизмам относится более высокая способность фетального трансферрина насыщаться железом, а также замедленный расход ферритина в связи с низкой активностью ксантиноксидазы.

Следовательно, у плода имеется положительный баланс железа. Транспорт железа является активным процессом, идущим против градиента концентрации в пользу плода без обратной передачи в плаценту и к матери. К моменту рождения ребёнка общий запас железа в его организме составляет 75 мг/кг массы тела. Эта величина является константной как у доношенного, так и у недоношенного ребёнка.

У ребёнка в желудочно-кишечном тракте абсорбция железа осуществляется значительно интенсивнее, чем у взрослых. Так, у детей первых месяцев жизни, находящихся на грудном вскармливании, может всасываться до 57% потребляемого железа, в возрасте 4-5 месяцев – до 40-50%, а в 7-10 лет – до 8-18%. У взрослого человека в среднем в желудочно-кишечном тракте утилизируется от 1 до 2% железа, поступаемого с пищей.

Суточные нормы поступления железа, необходимого для развития эффективного эритропоэза, следующие: до 4-х месячного возраста — 0,5 мг, от 5 месяцев до года – 0,7 мг, от 1 года до 12 лет – 1,0 мг, от 13 до 16 лет – 1,8 мг для мальчиков и 2,4 мг для девочек.

Поскольку ребёнок растёт, и общее содержание гемоглобина у него резко возрастает, то для образования последнего требуется усиленное поступление железа с пищей. Особенно велика потребность в железе в подростковом и юношеском возрасте. При наступлении менструаций у девочек потребность в железе значительно увеличивается, и оно может быть компенсировано лишь полноценным питанием.

Начиная с 12 недели, у плода в очагах кроветворения можно обнаружить кобальт , что подчёркивает его важную роль в процессах кроветворения. В дальнейшем с 5-го месяца внутриутробного развития, когда появляется нормобластическое кроветворение, кобальт у плода выявляется в печени. Вэритропоэзе участвует такжемарганец, медь, селен и другие микроэлементы.

Важную роль в регуляции эритропоэза у плода и ребёнка играют витамин В 12 и фолиевая кислота. Уплодакобаламин поступает в печень через плаценту от матери будущего ребёнка. Удоношенных детейзапасы витамина В 12 составляют 20-25 мкг. Суточная потребность ребёнка в витамине В 12 составляет 0,1 мкг. В то же время в 100 мл молока матери содержится приблизительно около 0,11 мкг кобаламина. В сыворотке доношенного новорожденного ребёнка содержание кобаламина колеблется в очень больших пределах и в среднем составляет 590 нг/л. В дальнейшем концентрация витамина В 12 в крови снижается и достигает к шестинедельному возрасту нормы, характерной для взрослого человека (в среднем 440 нг/л). Суточная потребность в фолиевой кислоте у грудных детей колеблется от 20 до 50 мкг. Содержание фолата в грудном молоке матери составляет в среднем 24 мкг/литр. Следовательно, грудное кормление полностью обеспечивает ребёнка необходимым количеством не только витамина В 12 , но и фолиевой кислотой.

В антенатальном периоде эритропоэтин образуется сначала в желточном мешке, а затем в печени. Его синтез в этом органе, как и у взрослого человека, регулируется напряжением кислорода в тканях и резко возрастает при гипоксии. Вместе с тем, в последнем триместре беременности образование эритропоэтина у плода переключается с печени на почки, которые к 40 дню после рождения ребёнка становятся основным органом синтеза эритропоэтина. Действие эритропоэтина у плода также осуществляется через рецепторы, которые находятся на гемопоэтических стволовых клетках эмбриона. Кроме того, рецепторы к эритропоэтину обнаружены в клетках плаценты, благодаря чему эритропоэтический фактор может быть перенесён от матери к плоду. Содержание эритропоэтина к моменту рождения как у доношенных, так и недоношенных детей значительно выше, чем у взрослых. В то же время у недоношенных детей его концентрация варьирует в широких пределах. В первые две недели после рождения ребёнка содержание эритропоэтина резко снижается (особенно у недоношенных) и даже к тридцатому дню жизни оказывается ниже, чем в среднем у взрослых. На втором месяце жизни ребёнка наблюдается существенное увеличение уровня эритропоэтина, и его концентрация приближается к цифрам, характерным для взрослых (5 – 35 МЕ/мл).

Особенности лейкопоэза у ребенка

Сразу после рождения ребенка число лейкоцитов очень велико и может достигать 2010 9 /л и даже больше. Этот физиологический лейкоцитоз обусловлен тяжелейшим стрессом, который ощущает ребенок, переходя во время родов в новую среду обитания. На протяжении 1 дня число лейкоцитов может даже возрастать и достигать 3010 9 /л, что связано со сгущением крови. Затем постепенно происходит уменьшение количества лейкоцитов (у части детей наблюдается их небольшой подъем между 4 и 9 днями). В грудном возрасте в разные месяцы уровень лейкоцитов колеблется в очень широких пределах – от 6 до 1210 9 / л. Нормы, характерные для взрослого человека, устанавливаются в возрасте 9-10 лет.

Лейкоцитарная формула новорожденного очень напоминает таковую у взрослых, хотя и отмечается явный сдвиг влево за счет преобладания, в основном, палочкоядерных нейтрофилов. Со 2-го дня число нейтрофилов начинает падать, а лимфоцитов – возрастать. На 5-7 день число нейтрофилов и лимфоцитов равняется 40-45% для каждой популяции. Это так называемый «первый перекрест» относительного содержания нейтрофилов и лимфоцитов. В дальнейшем число нейтрофилов продолжает уменьшаться, а число лимфоцитов повышаться более медленными темпами и к 3 –5-му месяцу лейкоцитарная формула представляет собой зеркальное отражение для взрослого человека. При этом число нейтрофилов достигает 25-30%, а лимфоцитов – 60–65%. Такое соотношение нейтрофилов и лимфоцитов с небольшими колебаниями сохраняется до 9-10-ти месячного возраста, после чего начинается планомерный подъем числа нейтрофилов и падения количества лейкоцитов, что приводит к появлению «второго перекреста» в возрасте 5-6 лет. После этого число лимфоцитов постепенно снижается, а количество нейтрофилов нарастает и к моменту полового созревания становится таким же, как у взрослого человека. Следует, однако, указать, что у детей одного и того же возраста, особенно в первые дни и месяцы жизни, отмечается чрезвычайный разброс в процентном содержании как нейтрофилов, так и лимфоцитов.

Что касается других клеток белой крови (эозинофилов, базофилов и моноцитов), то их относительное количество претерпевает на всем протяжении развития ребенка лишь незначительные колебания и мало отличается от показателей лейкоцитарной формулы взрослого человека

Примечание. В 5 дней и 5 лет содержание нейтрофилов и лимфоцитов в периферической крови примерно одинаково (45%). Чем младше ребенок, тем больше в периферической крови лимфоцитов. Соотношение лимфоцитов и нейтрофилов можно ориентировочно определить по формуле:

до 5 лет: нейтрофилы (%) = 45-2(5-п), лимфоциты(%) = 45+2(5-п), где п – число лет;

после 5 лет: нейтрофилы (%) = 45+2(п-5), лимфоциты (%) = 45-2(п-5)

Тромбоциты у ребенка

У новорождённого в первые часы жизни содержание кровяных пластинок не отличается от величин, характерных для детей более позднего возраста и для взрослых. В то же время у разных детей оно колеблется в очень широких пределах от 10010 9 /л до 40010 9 /л и в среднем равно около 20010 9 /л. В первые часы после рождения количество тромбоцитов возрастает, что может быть связано со сгущением крови, а к концу суток снижается и достигает цифр, характерных для ребенка, только что появившегося на свет. К концу 2-х суток количество тромбоцитов вновь увеличивается, приближаясь к верхней границе нормы взрослого человека. Однако к 7-10 дню число кровяных пластинок резко падает и достигает 150-20010 9 /л. Вполне возможно, что тромбоциты, как и эритроциты, подвергаются на первой неделе жизни массовому разрушению. У ребенка в возрасте 14 дней количество тромбоцитов соответствует приблизительно величине, характерной для новорождённого. В дальнейшем содержание тромбоцитов изменяется незначительно в ту или другую сторону, не отличаясь существенно от общепринятых норм для взрослых людей (150 — 40010 9 /л).

Особенности гемостаза у детей

У всех здоровых доношенных новорожденных первых пяти дней жизни имеется сопряженное снижение уровня прокоагулянтов, основных физиологических антикоагулянтов и плазминогена (табл. 32). Подобное соотношение свидетельствует о сбалансированности между отдельными звеньями системы гемостаза, хотя и на более низком функциональном уровне, чем в последующие возрастные периоды жизни. Характерная для раннего периода адаптации транзиторная гипокоагуляция обусловлена преимущественной гипопродукцией факторовIXиX, связанной с К-гиповитаминозом, хотя и не исключён механизм их потребления в процессе свёртывания крови. Примечательно, что в первые минуты и дни жизни, несмотря на фоновый дефицит витамина К, в плазме здоровых детей существенно повышается содержание РФМК – продуктов усиленной ферментативной деятельности тромбина. В динамике этот показатель быстро и прогрессивно увеличивается (по сравнению с нормой в 4,2 раза), достигая максимума к 3 – 5 дням. В последующем количество этих промежуточных продуктов фибринообразования заметно снижается и к концу периода новорождённости становится практически нормальным.

У детей с хронической гипоксией, недоношенностью отмечается более позднее формирование равновесия участников гемостатических реакций (табл. 33). Эти дети уже до родов, в родах и сразу после рождения проявляют склонность к кровоточивости и данная тенденция увеличивается в первые дни жизни («геморрагическая болезнь новорождённых»). У некоторых из них геморрагический синдром сочетается с тромбозами из-за низкой активности фибринолиза и антикоагулянтов, развитием ДВС-синдрома.

Время свертывания по Ли-Уайту: 5-12 мин.

Длительность кровотечения: 1-2 мин.

Схема анализа гемограммы

Оценка эритрограммы: содержания гемоглобина, эритроцитов, величины цветного показателя (ц.п.), количества ретикулоцитов, морфологических особенностей эритроцитов.

Снижение гемоглобина и эритроцитов – анемия, повышение – эритроцитоз

Ц.п. = (Нв в г/л х 0,3) : 2 первые цифры эритроцитов

Пример: Нв – 120г/л, эритроциты – 3,6*10.12/л, ц.п.=(120 х 0,3):36 = 1,0

Норма: 0,8 – 1,1

Ниже 0,8 – гипохромия, выше1,1 – гиперхромия

Снижение ретикулоцитов – ретикулоцитопения – гипорегенерация

Повышение ретикулоцитов – ретикулоцитоз – гиперрегенерация

Анизоцитоз – большие разбросы колебания размеров эритроцитов, микроцитоз – преобладание эритроцитов размером менее 7 микрон, макроцитоз – преобладание эритроцитов размером более 8 микрон

Оценка лейкограммы: количества лейкоцитов, соотношения разных форм лейкоцитов

Снижение количества лейкоцитов – лейкопения, увеличение – лейкоцитоз.

Снижение количества эозинофилов – эозинопения, повышение – эозинофилия

Снижение количества нейтрофилов – нейтропения, повышение – нейтрофилия. Если в периферической крови увеличивается содержание молодых форм гранулоцитов, говорят о сдвиге лейкоцитарной формулы влево.

Снижение лимфоцитов – лимфопения, повышение – лимфоцитоз

Снижение моноцитов – моноцитопения, повышение – моноцитоз

Снижение тромбоцитов – тромбоцитопения, повышение – тромбоцитоз.

Пример оценки гемограммы .

Ребенку 5 день жизни.

Нв – 150 г/л, эритроциты – 510 12 /л, ретикулоциты – 0,5%, лейкоциты – 1210 9 /л, эозинофилы – 1%, нейтрофилы палочкоядерные – 4%, нейтрофилы сегментоядерные – 41%, лимфоциты – 45%, моноциты – 9%, тромбоциты –10 9 /л, СОЭ – 5 мм/ч

Оценка. Эритрограмма. Ц.п.=(150х0,3):50 = 0,9

Физиологический эритроцитоз новорожденного, ц.п., содержание ретикулоцитов в норме.

Лейкограмма. Физиологический лейкоцитоз новорожденного, соотношение нейтрофилов и лимфоцитов можно определить как «первый перекрест» в 5 дней Содержание эозинофилов, моноцитов в пределах нормы.

Заключение. Нормальная гемограмма здорового ребенка в 5 дней.

Клинические методы исследования больных с заболеванием системы крови. Морфологическое исследование периферической крови, диагностическое значение.

Методическая разработка практического занятия для студентов III курса

лечебного факультета

Курс - III семестр

Факультет: лечебный

Продолжительность занятия : 4 академических часов

Место проведения: кардиологическое отделение ГКБ№4

1.Тема занятий: Клинические методы исследования больных с заболеванием системы крови. Морфологическое исследование периферической крови, диагностическое значение.

2.Значение изучения данной темы. Изучение данной темы дает понимание о методах клинического обследования больных с заболеванием системы крови, кроветворные органы чрезвычайно чувствительны к различным физиологическим и патологическим воздействиям на организм, отражением этих является картина периферического анализа крови в норме и при заболевании различных систем организма.

3.Цель занятия: Научить студентов клиническому обследованию больных с заболеванием системы крови и ознакомить студентов с основным показателями клинического анализа периферической крови в норме и при заболевании различных систем организма.

В результате изучения данной темы студент должен знать:

Основные жалобы больных с заболеванием системы крови;

Уметь проводить пальпацию периферических лимфатических узлов,

печени, селезенки;

Показатели общего анализа крови в норме;

Методику определения гемоглобина, эритроцитов, лейкоцитов, содержание гемоглобина в одном эритроците, скорости оседания эритроцитов (СОЭ);

Методику подсчёта лейкоцитарной формулы;

Клиническое значение клеток крови, средние содержание гемоглобина в одном эритроците, СОЭ;

Лейкоцитарную формулу в патологии;

Представление о стернальной пункции, трепанобиопсии;

Представление о коагулограмме;

Самоподготовка к занятию.

В результате самоподготовки студент должен знать:

Анатомо-физиологические особенности системы крови;

Основные жалобы больных с заболеванием системы крови, механизм их возникновения;

Данные общего осмотра больных с заболеванием системы крови;

Уметь проводить пальпацию периферических лимфатических узлов, печени, селезёнки;

Уметь анализировать данные общего анализа крови, биохимического анализа крови.

Базисные разделы для повторения, полученные студентом на смежных дисциплинах:

Анатомо-физиологические особенности системы крови, схема ростков кроветворения;

Метаболизм и обмен железа;

Разделы для повторения, полученные ранее по дисциплине пропедевтика внутренних болезней :

Анамнез и его разделы;

Общий осмотр;

Осмотр и пальпация периферических лимфатических узлов;

Перкуссия и пальпация печени;

Пальпация селезенки;

Аускультация сердца;

Исследование свойств пульса;

Критерии нормы периферического анализа крови.

Вопросы для повторения и изучения при подготовке к занятию.

1.Анатомо-физиологические особенности системы крови, схема ростков кроветворения;

3. Основные жалобы больных с заболеванием системы крови, механизм их возникновения;

4.Значение анамнеза для выявления факторов, способствующие развитию анемии.

5. Значение физикального обследования больных системой крови.

6. Значение количественных и качественных изменений клеточного состава крови:

а) эритроцитов;

б) изменение формы и окраски эритроцитов;

в) изменение цветового показателя;

г) количество ретикулоцитов;

д) лейкоцитоз и лейкопения;

е) нейтрофильный сдвиг;

ж) эозинофилия и анэозинофилия;

з) лимфоцитоз и лимфопения;

и) моноцитоз;

Вопрос 1. Анатомо-физиологические особенности системы крови.

Существуют несколько теорий кроветворения, но в настоящее время общепринятой является унитарная теория кроветворения, на основании которой была разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.).

  • унитарная теория (А. А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественника стволовой клетки;
  • дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;
  • полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают 6 классов клеток:

1класс-стволовые клетки;
2 класс - полустволовые клетки;
3 класс - унипотентные клетки;
4 класс - бластные клетки;
5 класс - созревающие клетки;
6 класс - зрелые форменные элементы.

Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения.

1 класс - стволовая полипотентная клетка, способная к поддержанию своей популяции. По морфологии соответствует малому лимфоциту, является полипотентной, то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток - индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются клон-образующие единицы - КОЕ.

2 класс - полустволовые, ограниченно полипотентные (или частично коммитированные) клетки - предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3-4 недели) и также поддерживают численность своей популяции.

3 класс - унипотентные поэтин-чувствительные клетки - предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ - поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).

Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.

4 класс - бластные (молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2-4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

5 класс - класс созревающих клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток - от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).

6 класс - зрелые форменные элементы крови. Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноциты не окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки - макрофаги. Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.

Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образуют его дифферон или гистологический ряд. Например, эритроцитарный дифферон составляет:

  • стволовая клетка;
  • полустволовая клеткапредшественница миелопоэза;
  • унипотентная эритропоэтинчувствительная клетка;
  • эритробласт;
  • созревающие клетки - пронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит, эритроцит.

В процессе созревания эритроцитов в 5 классе происходит: синтез и накопление гемоглобина, редукция органелл, редукция ядра. В норме пополнение эритроцитов осуществляется в основном за счет деления и дифференцировки созревающих клеток пронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения носит название гомопластического кроветворения. При выраженной кровопотери пополнение эритроцитов обеспечивается не только усиленным делением созревающих клеток, но и клеток 4, 3, 2 и даже 1 классов гетеропластический тип кроветворения, предшествующий собой уже репаративную регенерацию крови.Кровь представляет собой жидкость (жидкая ткань мезодермального происхождения), красного цвета, слабо щелочной реакции, солоноватого вкуса с удельным весом 1,054-1,066. Совместно с тканевой жидкостью и лимфой она образует внутреннюю среду организма. Кровь выполняет многообразные функции. Главнейшие из них следующие:

Транспорт питательных веществ от пищеварительного тракта к тканям, местам резервных запасов от них (трофическая функция);

Транспорт конечных продуктов метаболизма из тканей к органам выделения (экскреторная функция);

Транспорт газов (кислорода и диоксида углерода из дыхательных органов к тканям и обратно; запасание кислорода (дыхательная функция);

Транспорт гормонов от желез внутренней секреции к органам (гуморальная регуляция);

Защитная функция - осуществляется за счет фагоцитарной активности лейкоцитов (клеточный иммунитет), выработки лимфоцитами антител, обезвреживающих генетически чужеродные вещества (гуморальный иммунитет);

Свертывание крови, препятствующее кровопотере;

Терморегуляторная функция - перераспределение тепла между органами, регуляция теплоотдачи через кожу;

Механическая функция - придание тургорного напряжения органам за счет прилива к ним крови; обеспечение ультрафильтрации в капиллярах капсул нефрона почек и др.;

Гомеостатическая функция - поддержание постоянства внутренней среды организма, пригодной для клеток в отношении ионного состава, концентрации водородных ионов и др.

Относительное постоянство состава и свойств крови - гомеостаз является необходимым и обязательным условием жизнедеятельности всех тканей организма. Из всего объёма крови примерно половина циркулирует по организму. Остальная же половина задерживается в расширенных капиллярах некоторых органов и называется депонированной. Органы, в которых депонирована кровь, называются кровяным депо.

Схема кроветворения

(И. Л. Чертков и А. И. Воробьев, 1973 г.).

Селезёнка. Вмещает в своих лакунах - отростках капилляров до 16% всей крови. Эта кровь практически выключена из кругооборота и не смешивается с циркулирующей кровью. При сокращении гладких мышц селезёнки лакуны сжимаются, и кровь поступает в общее русло.

Печень. Вмещает в себя до 20% объёма крови. Печень выполняет роль кровяного депо за счёт сокращения сфинктеров печёночных вен, по которым кровь оттекает от печени. Тогда в печень крови поступает больше, чем оттекает. Капилляры печени расширяются, кровоток в ней замедляется. Однако депонированная в печени кровь полностью не выключается из кровотока.

Подкожная клетчатка. Депонирует до 10% крови. В кровеносных капиллярах кожи имеются анастомозы. Часть капилляров расширяется, заполняется кровью, а кровоток совершается по укороченным путям (шунтам).

Лёгкие также можно отнести к органам, депонирующим кровь. Объём сосудистого русла лёгких также не постоянен, он зависит от вентиляции альвеол, величины кровяного давления в них и от кровенаполнения сосудов большого круга кровообращения.

Таким образом, депонированная кровь выключена из кровотока и в основном не смешивается с циркулирующей кровью. Вследствие всасывания воды депонированная кровь более густа, она содержит большее количество форменных элементов.Значение депонированной крови заключается в следующем. Когда организм находится в состоянии физиологического покоя, его органы и ткани не нуждаются в усиленном снабжении кровью. В этом случае депонирование крови снижает нагрузку на сердце, и в результате оно работает на 1/5 - 1/6 своей мощности. При необходимости кровь может быстро перейти в кровоток, например при физической работе, сильных эмоциональных переживаниях, вдыхании воздуха с повышенным содержанием диоксида углерода - то есть во всех случаях, когда требуется, увеличит доставку кислорода и питательных веществ органам. В механизмах перераспределения крови между депонированной и циркулирующей участвует вегетативная нервная система: симпатические нервы вызывают увеличение объёма циркулирующей крови, а парасимпатические - переход крови в депо. При поступлении в кровь большого количества адреналина происходит выход крови из депо. При кровопотерях объём крови восстанавливается, прежде всего, за счёт перехода тканевой жидкости в кровь, а затем в кровоток поступает депонированная кровь. В результате объём плазмы восстанавливается значительно быстрее, чем количество форменных элементов. При увеличении объёма крови (например, при введении большого количества кровезаменителей или при выпаивании большого количества воды) часть жидкости быстро выводится почками, но большая часть переходит в ткани, а затем постепенно выводится из организма. Таким образом, восстанавливается объём крови, заполняющий сосудистое русло.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16

Кроветворение, или гемопоэз, - процессы возникновения и последующего созревания форменных элементов крови в так называемых органах кроветворения.

Эмбриональное кроветворение. Впервые кроветворение обнаруживается у 19-дневного эмбриона в кровяных островках желточного мешка, которые окружают со всех сторон развивающийся зародыш. Появляются начальные примитивные клетки - мегалобласты. Этот кратковременный первый период гемопоэза носит название мезобластического, или внеэмбрионального, кроветворения.

Второй (печеночный) период начинается после 6 нед и достигает максимума к 5-му месяцу. Наиболее отчетливо выражен эритропоэз и значительно слабее - лейко- и тромбоцитопоэз. Мегалобласты постепенно замещаются эритро-бластами. На 3-4-м месяце эмбриональной жизни в гемопоэз включается селезенка. Наиболее активно как кроветворный орган она функционирует с 5-го по 7-й месяц развития. В ней осуществляется эритроците-, гранулоцито- и мегакарио-цитопоэз. Активный лимфоцитопоэз возникает в селезенке позднее - с конца 7-го месяца внутриутробного развития.

К моменту рождения ребенка прекращается кроветворение в печени, а селезенка утрачивает функцию образования клеток красного ряда, гранулоцитов, мегакариоцитов, сохраняя функцию образования лимфоцитов.

На 4-5-м месяце начинается третий (костномозговой) период кроветворения, который постепенно становится определяющим в продукции форменных элементов крови.

Таким образом, в период внутриутробной жизни плода выделяют 3 периода кроветворения. Однако различные его этапы не строго разграничены, а постепенно сменяют друг друга.

Соответственно различным периодам кроветворения - мезобластическому, печеночному и костномозговому - существует три разных типа гемоглобина: эмбриональный (НЬР), фетальный (HbF) и гемоглобин взрослого (НЬА). Эмбриональный гемоглобин (НЬР) встречается лишь на самых ранних стадиях развития эмбриона. Уже на 8-10-й неделе беременности у плода 90-95% составляет HbF, и в этот же период начинает появляться НЬА (5-10%). При рождении количество фетального гемоглобина вирьирует от 45% до 90%. Постепенно HbF замещается НЬА. К году остается 15% HbF, а к 3 годам количество его не должно превышать 2%. Типы гемоглобина отличаются между собой аминокислотным составом.

Кроветворение во внеутробном периоде. Основным источником образования всех видов клеток крови, кроме лимфоцитов, у новорожденного является костный мозг. В это время и плоские, и трубчатые кости заполнены красным костным мозгом. Однако уже с первого года жизни начинает намечаться частичное превращение красного костного мозга в жировой (желтый), а к 12-15 годам, как и у взрослых, кроветворение сохраняется в костном мозге только плоских костей. Лимфоциты во внеутробной жизни вырабатываются лимфатической системой, к которой относятся лимфатические узлы, селезенка, солитарные фолликулы, групповые лимфатические фолликулы (пейеровы бляшки) кишечника и другие лимфоидные образования.

Моноциты образуются в ретикулоэндотелиальной системе, включающей ретикулярные клетки стромы костного мозга, селезенки, лимфатических узлов, звездчатые ретикулоэндотелиоциты (клетки Купфера) печени и гистиоциты соединительной ткани.

Периоду новорожденности свойственна функциональная лабильность и быстрая истощаемость костного мозга. Под влиянием неблагоприятных воздействий: острых и хронических инфекций, тяжелых анемий и лейкозов - у детей раннего возраста может возникнуть возврат к эмбриональному типу кроветворения.

Регуляция гемопоэза осуществляется под влиянием нервных и гуморальных факторов. Существование прямой связи между нервной системой и органами кроветворения может быть подтверждено наличием иннервации костного мозга.

Постоянство морфологического состава крови является результатом сложного взаимодействия процессов кроветворения, кроворазрушения и кровораспределения.

Кровь новорожденного. Общее количество крови у детей не является постоянной величиной и зависит от массы тела, времени перевязки пуповины, доношенности ребенка. В среднем у новорожденного объем крови составляет около 14,7% его массы тела, т. е. 140-150 мл на 1 кг массы тела, а у взрослого - соответственно 5,0-5,6%, или 50-70 мл/кг.

В периферической крови здорового новорожденного повышено содержание гемоглобина (170-240 г/л) и эритроцитов (5-7-1012 /л), а цветовой показатель колеблется от 0,9 до 1,3. С первых же часов после рождения начинается распад эритроцитов, что клинически обусловливает появление физиологической желтухи.

Эритроциты полихроматофильны, имеют различную величину (анизоцитоз), преобладают макроциты. Диаметр эритроцитов в первые дни жизни составляет 7,9-8,2 мкм (при норме 7,2-7,5 мкм). Ретикулоцитоз в первые дни достигает 22-42°/00 (у взрослых и детей старше 1 мес 6-8°/ж)", встречаются ядерные формы эритроцитов - нормобласты. Минимальная резистентность (осмотическая стойкость) эритроцитов несколько ниже, т. е. гемолиз наступает при больших концентрациях NaCl - 0,48-0,52%, а максимальная - выше 0,24-0,3%. У взрослых и детей школьного и дошкольного возраста минимальная резистентность равна 0,44-0,48%, а максимальная - 0,28-0,36%.

Лейкоцитарная формула у новорожденных имеет особенности. Диапазон колебания общего числа лейкоцитов довольно широкий и составляет 10-30-109 /л. В течение первых часов жизни число их несколько увеличивается, а затем падает и со второй недели жизни держится в пределах 10-12-109 /л.

Нейтрофилез со сдвигом влево до миелоцитов, отмечаемый при рождении (60-50%), начинает быстро снижаться, а число лимфоцитов нарастает, и на 5- 6-й день жизни кривые числа нейтрофилов и лимфоцитов перекрещиваются (первый перекрест). С этого времени лимфоцитоз до 50-60% становится нормальным явлением для детей первых 5 лет жизни.

Большое количество эритроцитов, повышенное содержание в них гемоглобина, наличие большого количества молодых форм эритроцитов указывают на усиленный гемопоэз у новорожденных и связанное с этим поступление в периферическую кровь молодых, еще не созревших форменных элементов. Эти изменения вызваны тем, что гормоны, циркулирующие в крови беременной женщины и стимулирующие ее кроветворный аппарат, переходя в тело плода, повышают работу его кроветворных органов. После рождения поступление в кровь ребенка этих гормонов прекращается, вследствие чего быстро падает количество гемоглобина, эритроцитов, лейкоцитов. Кроме этого, усиленное кроветворение у новорожденных можно объяснить особенностями газообмена - недостаточным снабжением плода кислородом. Для состояния аноксемии характерно увеличение количества эритроцитов, гемоглобина, лейкоцитов. После рождения ребенка устраняется кислородное голодание и продукция эритроцитов уменьшается.

Труднее объяснить увеличение количества лейкоцитов и особенно нейтрофилов в первые часы внеутробной жизни. Возможно, имеет значение разрушение эмбриональных очагов кроветворения в печени, селезенке и поступление из них молодых элементов крови в периферическое кровяное русло. Нельзя исключить влияния на гемопоэз и рассасывания внутритканевых кровоизлияний.

Колебания со стороны остальных элементов белой крови сравнительно невелики. Число кровяных пластинок в период новорожденное™ в среднем составляет 150-400-109 /л. Отмечается их анизоцитоз с наличием гигантских форм пластинок.

Продолжительность кровотечения не изменена и по методу Дюке равна 2-4 мин. Время свертывания крови у новорожденных может быть ускоренным или нормальным, а у детей с выраженной желтухой удлинено. Показатели времени свертывания зависят от используемой методики. Гематокритное число, дающее представление о процентном соотношении между форменными элементами крови и плазмой в первые дни жизни, более высокое, чем у детей старшего возраста, и составляет около 54%. Ретракция кровяного сгустка, характеризующая способность тромбоцитов стягивать волокна фибрина в сгустке, в результате чего объем сгустка уменьшается и из него отжимается сыворотка, составляет 0,3-0,5.

Кровь детей первого года жизни. В этом возрасте продолжается постепенное снижение числа эритроцитов и уровня гемоглобина. К концу 5-6-го месяца наблюдаются наиболее низкие показатели. Гемоглобин снижается до 120-115 г/л, а количество эритроцитов - до 4,5-3,7-1012 /л. Цветовой показатель при этом становится меньше 1. Это явление физиологическое и наблюдается у всех детей. Оно обусловлено быстрым нарастанием массы тела, объема крови, недостаточным поступлением с пищей железа, функциональной несостоятельностью кроветворного аппарата. Макроцитарный анизоцитоз постепенно уменьшается и диаметр эритроцитов становится равным 7,2-7,5 мкм. Полихроматофилия после 2-3 мес не выражена. Величина гематокрита уменьшается параллельно снижению количества эритроцитов и гемоглобина с 54% в первые недели жизни до 36% к концу 5-6-го месяца.

Количество лейкоцитов колеблется в пределах 9-10-109 /л. В лейкоцитарной формуле преобладают лимфоциты.

С начала второго года жизни до пубертатного периода морфологический состав периферической крови ребенка постепенно приобретает черты, характерные для взрослых. В лейкограмме после 3-4 лет выявляется тенденция к умеренному нарастанию числа нейтрофилов и уменьшению количества лимфоцитов. Между пятым и шестым годом жизни наступает 2-й перекрест числа нейтрофилов и лимфоцитов в сторону увеличения количества нейтрофилов.

Следует отметить, что в последние десятилетия выявляется тенденция к снижению количества лейкоцитов у здоровых детей и взрослых до 4,5-5.0109 /л. Возможно, это связано с изменившимися условиями окружающей среды.

Кровь Жидкая ткань, омывающая все клетки
организма, насыщающая их кислородом и
обеспечивающая все виды обмена.
Состоит из плазмы и взвешенных в ней
форменных элементов: эритроцитов,
лейкоцитов, тромбоцитов.
Кровь наряду с лимфой и тканевой
жидкостью образует внутреннюю среду
организма, омывающую все клетки и ткани
тела.

Функции крови

Транспортная:
доставляет тканям питательные вещества,
кислород
уносит из тканей конечные продукты обмена
переносит гормоны и другие физиологически
активные вещества из одних клеток, где они
образуются, к другим
Защитная: обусловлена наличием в крови
лейкоцитов, способных к фагоцитозу, а также
тем, что в крови есть иммунные тела,
обезвреживающие микроорганизмы и их яды и
разрушающие чужеродные белки.

Кроветворение (гемопоэз)

Процесс возникновения и последующего
созревания форменных элементов крови в
органах кроветворения.

Периоды кроветворения у плода

Внеэмбриональный: у 19-дневного эмбриона в
кровяных островках желточного мешка.
Печеночный: с 6 недель до 5 месяцев. На 3-4-м
месяце в гемопоэз включается селезенка. В ней
осуществляется эритро-, грануло- и
мегакариоцитопоэз. Активный лимфопоэз
возникает в селезенке с конца 7-го месяца
внутриутробного развития.
Костномозговой: с 4-5 месяцев, постепенно
становится определяющим в продукции
форменных элементов крови.

АФО крови

Соответственно различным периодам
кроветворения существуют 3 типа
гемоглобина (Hb): эмбриональный (НbP),
фетальный (НbF) и гемоглобин взрослого
(НbА).
При рождении определяется от 45 до 90%
фетального гемоглобина, который
постепенно замещается гемоглобином
взрослого. К 1 году остается около 15%
фетального гемоглобина, а к 3 годам
количество его не должно превышать 2%.

АФО органов кроветворения

К моменту рождения ребенка прекращается
кроветворение в печени, а селезенка
утрачивает функцию образования клеток
красного ряда, гранулоцитов,
мегакариоцитов, сохраняя функцию
образования лимфоцитов, моноцитов и
разрушения стареющих или поврежденных
эритроцитов и тромбоцитов.

АФО органов кроветворения

Во внутриутробном периоде основным источником
образования всех видов клеток крови, кроме
лимфоцитов, является костный мозг.
У новорожденных плоские и трубчатые кости
заполнены красным костным мозгом. Это имеет
значение при выборе места костномозговой пункции.
У детей первых месяцев жизни для получения
костного мозга можно пунктировать пяточную кость, у
более старших - грудину.
С первого месяца жизни красный костный мозг
постепенно замещается жировым (желтым), и к 12-15
годам кроветворение сохраняется только в плоских
костях.

10. Кровь новорожденного

Периоду новорожденности свойственны
функциональная лабильность и быстрая
истощаемость костного мозга.
У новорожденного объем крови составляет
около 14,7% массы тела, т.е. 140-150 мл на
1 кг массы, а у взрослого –соответственно 55,6%, или 50-70 мл/кг.

11. Кровь новорожденного

В периферической крови здорового
новорожденного повышено содержание
гемоглобина (170-240 г/л) и эритроцитов (57х1012/л), а цветовой показатель колеблется от
0,9 до 1,3.
С первых часов после рождения начинается
распад эритроцитов, что клинически
обусловливает появление транзиторной
желтухи.
Эритроциты имеют различную величину
(анизоцитоз), преобладают макроциты.
Повышено содержание ретикулоцитов.
Встречаются ядерные формы эритроцитов нормобласты.

12. Кровь новорожденного

Диапазон колебания общего числа лейкоцитов
составляет 10-30х109/л.
Нейтрофилез со сдвигом влево до миелоцитов,
отмечаемый при рождении (до 50-60%), начинает
быстро снижаться, а число лимфоцитов нарастает, и на
5-6-й день жизни кривые числа нейтрофилов и
лимфоцитов перекрещиваются (первый перекрест). С
этого времени лимфоцитоз до 50-60% и более
становится нормальным явлением для детей первых 5
лет жизни.
Колебания со стороны остальных элементов белой
крови сравнительно невелики.
Количество тромбоцитов составляет 150- 400х109/л.

13. Кровь недоношенных детей

Повышенное количество молодых ядросодержащих форм
эритроцитов, более высокое содержание НbF в них, причем
он тем выше, чем менее зрелым родился ребенок.
Высокие показатели гемоглобина и эритроцитов при
рождении уменьшаются значительно быстрее, чем у
доношенных детей, что приводит в возрасте 1,5-2 мес. к
развитию ранней анемии недоношенных.
Второе снижение концентрации гемоглобина начинается в
4-5 мес. жизни и характеризуется признаками гипохромной
железодефицитной анемии. Это поздняя анемия
недоношенных.
Картина белой крови характеризуется более значительным
количеством молодых клеток (выражен сдвиг до
миелоцитов). Формула зависит от степени зрелости
ребенка.
СОЭ замедлена до 1-3 мм/ч.

14. Кровь детей первого года жизни

Постепенное снижение числа эритроцитов и уровня
гемоглобина.
К концу 5-6-го месяца наблюдаются наиболее низкие
показатели. Гемоглобин снижается до 115-120 г/л, а
количество эритроцитов - до 4,5-3,7х1012/л. Цветовой
показатель при этом становится меньше 1.
Это явление физиологическое и наблюдается у всех
детей. Оно обусловлено быстрым нарастанием массы
тела, объема крови, недостаточным поступлением с
пищей железа, функциональной несостоятельностью
кроветворного аппарата. Макроцитарный анизоцитоз
постепенно уменьшается.
Количество лейкоцитов колеблется в пределах 810х109/л. В лейкоцитарной формуле преобладают
лимфоциты.

15. Кровь детей старше одного года

С начала второго года жизни до пубертатного
периода состав периферической крови ребенка
постепенно приобретает черты, характерные для
взрослых.
В лейкограмме после 3-4 лет выявляется тенденция к
умеренному нарастанию числа нейтрофилов и
уменьшению количества лимфоцитов. Между 5 и 6
годами жизни наступает второй перекрест числа
нейтрофилов и лимфоцитов в сторону увеличения
количества нейтрофилов.
В последние десятилетия выявляется тенденция к
снижению количества лейкоцитов у здоровых детей и
взрослых до 4,5-5х109/л.

16. Жалобы

Кровотечение
Кровоизлияния
Увеличение лимфатических узлов
Бледность кожных покровов и слизистых
Оссалгия - боль в костях

17. Жалобы общего характера

Гипертермия
Головная боль, головокружение
Утомляемость, слабость
Нарушение памяти
Плохой аппетит
Одышка при физической нагрузке

18. Анамнез заболевания

Точно установить первый день появления
признаков, условия их возникновения,
особенно кровотечений и кровоизлияний
(самопроизвольно, под влиянием
значительного или поверхностного
повреждения, удара, перегревания,
физической нагрузки).
Динамика патологических симптомов (когда
появились свежие элементы, одновременно
или поочередно).

19. Анамнез заболевания

Выяснить проведенную терапию, в том числе
дозу и длительность приема лекарственных
препаратов, их эффективность.
Результаты возможного лабораторного и других
методов обследования.
Если заболевание возникло не впервые и
является очередным обострением, необходимо
провести аналогичный опрос предыдущих
случаев с уточнением времени их
продолжительности, клинических признаков,
проведенного лечения и т.д.

20. Анамнез жизни

Наследственность: гемофилия, склонность к
патологии крови и кроветворной системы.
У детей грудного возраста подробно
собирается акушерский анамнез.
В каждом случае выясняются вопросы
ухода за ребенком, материально-бытовых и
семейных условий, здоровья родителей,
особенно матери, вредных привычек.

21. Осмотр

Положение больного: активное, пассивное,
вынужденное.
Кровотечение: его локализация,
интенсивность, продолжительность.
Цвет кожных покровов: бледность,
иктеричность, цианоз и т.п.
Геморрагическая сыпь.
Геморрагии: кровоизлияния, синяки.

22. Осмотр

Гематома - опухолеподобное скопление крови,
излившейся в подкожной клетчатке, мышечной
ткани, в забрюшинном пространстве и других
участках.
Гемартрозы: это кровоизлияния или гематома в
суставах.
При значительном увеличении можно визуально
обнаружить периферические лимфатические
узлы.
Выпячивание живота может быть признаком
увеличения печени и селезенки.
Отеки.

23. Пальпация

При заболеваниях крови диагностическое
значение имеет пальпация:
печени
селезенки
лимфатических узлов

24. Пальпация селезенки

Выполняется в положении больного на спине или
на боку.
Исследующий кладет свою левую руку на область
VII-X ребер по левым подмышечным линиям.
Слегка согнутые пальцы правой руки располагают
примерно напротив Х ребра на 3-4 см ниже левой
реберной дуги параллельно ей. Кожу передней
стенки живота слегка оттягивает по направлению
к пупку, пальцы пальпирующей руки погружает в
глубь брюшной полости, образуя своеобразный
"карман". На вдохе больного селезенка, если она
увеличена, выходит из-под края реберной дуги,
наталкивается на пальпирующие пальцы и
"соскальзывает" с них.

25. Пальпация селезенки

26. Пальпация селезенки

В норме селезенка не пальпируется, т.к. ее
передний край не доходит до края
реберной дуги 3-4 см.
Селезенку удается пропальпировать при ее
увеличении в 1,5-2 раза. При этом
оценивают: форму, консистенцию,
состояние поверхности, подвижность,
болезненность.

27. Перкуссия селезенки

Может проводиться: либо стоя с приподнятыми
вверх руками, либо лежа на правом боку.
Вначале определяют верхнюю и нижнюю
границы селезенки. Для этого палец-плессиметр
устанавливают в поперечном направлении на
левую боковую поверхность грудной клетки на
уровне V ребра. Средняя фаланга пальца должна
лежать на средней подмышечной линии и быть
перпендикулярной ей. Ведут перкуссию сверху
вниз до перехода ясного легочного звука в тупой
и делают отметку со стороны ясного звука.
В норме верхняя граница селезеночной тупости
располагается на IX ребре.

28. Перкуссия селезенки

Для определения нижней границы
селезеночной тупости палец-плессиметр
располагают ниже XII ребра и перкутируют по
той же линии в направлении снизу вверх до
появления тупого звука.
В норме нижняя граница находится на уровне
XI ребра. Расстояние между полученными
точками характеризует ширину селезеночной
тупости и в среднем равно 4 см.

29. Перкуссия селезенки

Определение передней и задней границы
селезеночной тупости осуществляется с
помощью перкуссии по Х ребру. Палецплессиметр располагают у края левой реберной
дуги перпендикулярно этому ребру и
перкутируют до перехода тимпанического звука
в тупой.
В норме передняя граница селезеночной
тупости не должна выходить за левую суставную
линию (линия, соединяющая край XI ребра с
местом соединения левой ключицы с грудиной).

30. Перкуссия селезенки

Чтобы найти заднюю границу селезеночной
тупости, палец-плессиметр располагают
перпендикулярно Х ребру между левыми
задней подмышечной и лопаточной
линиями и перкутируют вдоль этого ребра
кпереди до появления тупого звука.
Измерив расстояние между данными
точками, получают длинник селезенки (в
среднем 6 см).

31. Перкуссия селезенки

32. Дополнительные методы обследования

Общий анализ крови
Коагулограмма
Миелограмма
УЗИ селезёнки

Кроветворение начинается в желточном мешке на 3 неделе внутриутробного развития. Вначале оно сводится в основном к эритропоэзу. Образование первичных эритробластов происходит внутри сосудов желточного мешка. На 4 неделе кроветворение появляется в органах эмбриона. Из желточного мешка гемопоэз перемещается в печень, которая закладывается на 3-4 неделе, а к 5 неделе становится центром кроветворения. В печени происходит образование эритроцитов, гранулоцитов, мегакариоцитов. Кроме того, на 9 неделе внутриутробного периода впервые в печени появляются В-лимфоциты. Однако в этот период секреция антител ничтожно мала, усиливается она лишь к 20 неделе в селезенке. К 18-20 неделе внутриутробного развития кроветворная активность в печени резко снижается, а к концу внутриутробной жизни, как правило, совсем прекращается.

В селезенке кроветворение начинается с 12 недели: образуются эритроциты, гранулоциты, формируются мегакариоциты. С 20 недели происходит становление лимфопоэтической функции селезенки и миелопоэз сменяется интенсивным лимфопоэзом, который продолжается в этом органе в течение всей жизни человека. Уже к 20 неделе в сыворотке крови плода начинают обнаруживаться иммуноглобулины M,G.

В костном мозге гемопоэтические очаги появляются с 13-14 недели внутриутробного развития в диафизах бедренных и плечевых костей. Липолизация костного мозга начинается с первого года жизни ребенка и к концу 12 года заканчивается в диафизах конечностей, а к 24-25 годам - в метаэпифизах. В плоских костях кроветворение происходит в течение всей жизни человека.

Признанной современной схемой кроветворения является схема И.Л.Черткова и А.И.Воробьева. А.И.Воробьев характерузует кроветворение как серию клеточных дифференцировок, в результате которых появляются нормальные клетки периферической крови. Этапы кроветворения автором прослежены при восстановлении костного мозга после его опустошения, развившегося в результате обучения или воздействия химических цитостатических препаратов.

Необходимо отметить специфику периферической крови у здоровых детей. В период новорожденности в крови содержится значительное количество эритроцитов, гемоглобина. Так, число эритроцитов в первый день жизни может достигать 6х10 12 /л, уровень гемоглобина до 215 г/л. К концу 1 недели эти показатели снижаются.

Цветовой показатель в период новорожденности составляет 1,0-1,1. Количество ретикулоцитов в периферической крови ребенка в первые дни жизни повышен до 40-50% 4о 0 и к концу первой недели уменьшается до стабильных величин 7-10 %о.

Количество лейкоцитов после рождения увеличено до 30х10 9 /л и к концу 1 недели снижается до 10-12х10 9 /л. В лейкоцитарной формуле при рождении преобладают нейтрофилы (60-65%) со сдвигом влево до метамиелоцитов и миелоцитов. Число лимфоцитов при рождении составляет 16-34%. К 4-5 дню количество нейтрофилов и лимфоцитов выравнивается (по 45%) с последующим нарастанием лимфоцитов до 50-60% к 1-2 годам. К 4-5 годам количество лимфоцитов и нейтрофилов вновь выравнивается с последующим нарастанием нейтрофилов.

Скорость оседания эритроцитов у новорожденных составляет не более 1-2 мм/час и остается на таком уровне до 4-5 летнего возраста. Затем этот показатель не отличается от такового у взрослых.

Под анемией понимают патологическое состояние организма, характеризующееся уменьшением числа эритроцитов и снижением уровня гемоглобина в единице объема крови. Слово "анемия" происходит от греческого "anaemia" - бескровие, малокровие.

Это состояние развивается вследствие снижения интенсивности гемоглобинообразования или усиленной деструкции эритроцитов либо вследствие сочетания обоих факторов.

Одной из наиболее важных функций эритроцитов и содержащегося в них гемоглобина является транспорт кислорода, поэтому снижение содержания гемоглобина ведет к возникновению гипоксии, что неблагоприятно отражается на растущем организме: развивается смешанный ацидоз с последующим нарушением деятельности всех органов и систем и в первую очередь ЦНС и ССС.

По классификации В.И.Калиничевой (1983), анемии делят на 5 основных групп:

I. Анемии, вызванные недостатком гемопоэтических факторов:

1) железодефицитные;

2) витаминодефицитные;

3) протеинодефицитные.

II. Гипопластические и апластические анемии:

1) наследственные (Фанкони, Эстрена-Дамешека, Блекфена-Дайемонда);

2) приобретенные (с общим поражением гемопоэза, с парциальным поражением эритропоэза).

III. Анемия, вызванная кровопотерей.

IV. Гемолитические анемии:

1) наследственные, связанные с нарушением мембраны эритроцитов (микросфероцитоз, эллиптоцитоз);

2) наследственные, связанные с нарушением активности ферментов эритроцитов (дефицит активности Г-6 ФД);

3) наследственные, связанные с нарушением структуры или синтеза гемоглобина (L-, B-талассемия);

4) приобретенные, связанные с воздействием антител (аутоиммунные, изоиммунные);

V. Анемии при различных заболеваниях (гематологических, эндокринных, при ожоговой болезни).

1) Легкая степень: гемоглобин 110-90г/л;

2) Анемия средней тяжести: гемоглобин 90-70г/л;

3) Тяжелая степень: гемоглобин менее 70 г/л.

Оценить функциональные возможности эритропоэза можно по числу ретикулоцитов, в соответствии с которым анемии делятся на:

1) регенераторные: ретикулоциты 5-50%о;

2) гиперрегенераторные: ретикулоциты свыше 50%о;

3) гипо-, арегенераторные: ретикулоциты менее 5%о или отсутствуют.

В качестве дополнительной характеристики анемии можно использовать величину цветового показателя, в соответствии с которым анемии делятся на гипохромные, нормохромные и гиперхромные (цветовой показатель соответственно менее 0,8; 0,8-1,0; более 1,0).

Железодефицитная анемия в настоящее время является актуальной и важной проблемой в здравоохранении многих регионов земного шара, поскольку частота ее колеблется от 24 до 73%. Латентным дефицитом железа страдает 1/2 детей в возрасте до 3 лет, 1/3 – от 3 до 7 лет и 1/4 - школьников.

Этиология : Непосредственной причиной развития железодефицитной анемии у ребенка является дефицит железа в организме. Однако способствовать этому дефициту или приводить к нему может целый ряд обстоятельств и предрасполагающих факторов, помнить о которых необходимо, так как это имеет прямую связь с профилактикой железодефицитной анемии у детей.

Анализируя причины анемии у детей первого года жизни, следует сказать, что большую роль играет обеспеченность плода железом при внутриутробном его развитии, а также при грудном вскармливании.

Согласно данным ВОЗ, среди беременных женщин в различных странах железодефицитная анемия встречается в 20-80%, а латентный дефицит железа еще чаще – в 50-100% случаев. Если плод получает мало железа от матери, то на самых ранних этапах его постнатальной жизни резко возрастает потребность в экзогенном железе. Практически у 100% недоношенных детей развивается железодефицитная анемия. Так как депонирование железа наблюдается уже в ранние сроки беременности, то степень анемии и ее тяжесть будет зависеть от сроков недоношенности. Однако установлено, что и у доношенных детей развитие анемии зависит от массы тела при рождении. Анемией страдает 50% детей, родившихся с массой тела менее 3000г.

Основной причиной развития анемии у детей первых двух лет жизни принято считать алиментарный дефицит железа. Грудное и коровье молоко не удовлетворяет потребность растущего организма в железе, поэтому важна организация сбалансированного питания ребенка по всем ингредиентам, в том числе и по железу. Потребность ребенка в железе на 1-ом году жизни составляет 1-2мг/кг/сут. Эти цифры редко достигаются, если в рацион ребенка не вводятся специальные, обогащенные железом продукты детского питания (соки, овощные и фруктовые пюре, каши, мясные блюда). Из естественных продуктов лучше всего железо всасывается из рыбы, куриного мяса, а также из смеси мясных и овощных пюре.

Алиментарный дефицит железа играет важную роль и в развитии анемии у детей старшего возраста. Нередко в пищевом рационе детей преобладают молоко, сдоба, макароны, ограничены мясные продукты, овощи и фрукты. Увеличение числа анемий у детей связывают с акселерацией, более высокими показателями длины и массы тела при рождении, а также с ранним удвоением массы тела, что сопряжено с увеличением потребности в железе, а значит и с быстрым использованием его эндогенных резервов. Повышенная потребность в железе возникает у детей в препубертатном и пубертатном возрасте (быстрый рост, когда потребность превышает поступление железа).

Железодефицитная анемия может развиваться у детей, страдающих геморрагическими заболеваниями (гемофилия, болезнь Виллебранда).

Дефицит железа в организме ребенка может быть вызван синдромом малабсорбции (целиакия, кишечные инфекции, дисбактериоз кишечника).

Определенный процент железа теряется за счет слущивания кожного эпителия, эпителия желудочно-кишечного тракта, дыхательных и мочевыводящих путей. Незначительное количество железа теряется при выпадении волос и смене ногтей.

Железодефицитная анемия может развиваться в результате хронической гнойно-очаговой инфекции (отит, тонзиллит, аденоидит и т.д.), а также у детей с органическим поражением нервной системы (за счет снижения уровня трансферрина крови).

Железу как незаменимому пищевому компоненту принадлежит важная роль в активности и синтезе многих металлоферментов, чем и объясняется его влияние на процесс роста, развития, тканевого дыхания, гемопоэза, иммуногенеза и другие физиологические процессы.

Основное количество железа у человека представлено гемовым железом (75-80%). Основная часть железа содержится в плазме крови, костном мозге, клетках ретикулоэндотелиальной системы, ферментных системах, мышцах, печени.

Всасывание железа определяется содержанием его в организме.

Основное количество железа всасывается в двенадцатиперстной кишке и в начальной части тощей кишки, хотя начинается всасываться уже в желудке. Однако любые диспептические явления, сопровождающиеся гипоацидностью, рвотой, ускоренной эвакуацией пищевых масс, дефицитом пищеварительных ферментов, участвующих в процессе полостного и пристеночного пищеварения и всасывания, а тем более воспалительные изменения с повышенной выработкой слизи, отеком слизистой оболочки кишечника, дисбактериозом нарушают процесс всасывания железа слизистой кишечной стенки. Избыток железа в слизистой связывается с ферритином.

Дальнейшую транспортировку железа осуществляет другой транспортный белок сыворотки крови - трансферрин, определяющий общую железосвязывающую способность сыворотки.

Трансферрин относится к бета-глобулинам. Он вырабатывается в печени, патологические состояния которой отрицательно сказываются на синтезе трансферрина. Этим можно объяснить упорную анемию у детей с хроническими гепатитами. Трансферрин доставляет железо в различные депо (печень, селезенку, костный мозг и др.), где он откладывается в виде ферритина и по мере надобности потребляется.

Патогенез. В развитии железодефицитной анемии, как и всякой другой, имеет значение гипоксия, недостаточность обеспечения тканей кислородом, а кроме того, нарушения активности ряда ферментов в связи с дефицитом железа. В отличии от других анемий ферментные нарушения при железодефицитной анемии преобладают над гипоксией, так как дефицит железа в организме способствует включению компенсаторных механизмов, нормализующих отдачу килорода из гемоглобина тканям. Железодефицитная анемия, как правило, не сопровождается повышением уровня эритропоэтина (как естественный реакцией на гипоксию). Только при тяжелой анемии механизмов компенсации у детей оказывается недостаточно и это способствует появлению признаков гипоксии тканей.

В связи с понижением уровня кислорода в крови и уменьшением ее вязкости за счет снижения массы форменных элементов падает сосудистое сопротивление и повышается скорость кровотока, начинаются такихардия и одышка, увеличивается сердечный выброс. Гипоксические изменения в миокарде при снижении уровня железосодержащих ферментов усиливаются гемодинамические расстройства. Эти же механизмы лежат в основе нарушения синтеза ДНК и РНК в печеночных клетках, уменьшения числа гепатоцитов и развития жирового гепатоза. В селезенке повышается количество ДНК, что способствует увеличению массы органа. В почках также отмечается гипертрофия, а в головном мозге нередко, наоборот, гипотрофия.

Дефицит железа в организме связывает со снижением активности гемсодержащих ферментов (цитохром С, цитохромоксидаза), а также ферментов, для активации которых необходим ион железа. Это приводит к дегенеративно-дистрофическим изменениям прежде всего в эпителиальных клетках желудочно-кишечного тракта: снижается количество желудочного сока, падает активность альфа-амилазы, липазы, трипсина, что ведет к недостаточному усвоению аминокислот, витаминов, солей, в том чиле и самого железа, т.е. дефицит железа приведет к синдрому малабсорбции.

Клеточный иммунитет нарушается в виде понижения бласттрансформации лимфоцитов, уменьшения числа Т-лимфоцитов и снижения макрофагальной функции. Наблюдается несостоятельность фагоцитоза, что следует учитывать при нарастающей инфекционной заболеваемости детей.


Похожая информация.