Искусственное выращивание. Органы из пробирки: что уже умеют выращивать

Ученые впервые создали химеру человека и свиньи – статья, рассказывающая об этом эксперименте, была опубликована 26 января в научном журнале Cell. Международная команда ученых под руководством Хуана Карлоса Исписуа Бельмонте, профессора Института биологических исследований Солка (США), на протяжении 28 дней выращивала в организме свиньи эмбрионы, содержащие стволовые клетки человека. Из двух тысяч гибридных зародышей 186 развились в организмы, в которых человеческая часть составляла одну на десять тысяч клеток.

Химеры – организмы, прозванные в честь монстра из греческих мифов, соединяющего в себе козу, льва и змею, – получаются в результате соединения генетического материала двух животных, но без рекомбинации ДНК (то есть обмена генетической информацией, который происходит при зачатии ребенка). В результате у химер два набора генетически разнородных клеток, но функционируют они как целый организм. В ходе эксперимента, о котором пишет Cell, ученые вынули из беременной свиноматки эмбрионы и подсадили в них индуцированные человеческие стволовые клетки, после чего эмбрионы отправили обратно развиваться в теле свиньи. Появиться на свет химерам не позволили – от них избавились еще на ранней стадии беременности самки.

Зачем ученым нужны гибридные организмы?

Ниша для органов


Одна из ⁠главных ⁠целей эксперимента – выращивание человеческих органов ⁠в организме животных. Часть пациентов ⁠годами ждет очереди на трансплантацию, и создание биологического материала ⁠таким путем могло бы спасти тысячи жизней. «Мы еще далеки от этого, но первый и важный шаг сделан», – говорит Исписуа Бельмонте. Человеческий орган, выращенный в химере из собственных клеток больного, решил бы проблему отторжения трансплантата организмом больного, так как был бы выращен из его собственных клеток.
Развить человеческие органы в теле животного ученые собираются с помощью генного редактирования (а именно инновационным способом CRISPR-Cas9). Первоначально ДНК эмбриона животного будут изменять так, чтобы в нем не развился необходимый орган, например сердце или печень. Такую «нишу» будут заполнять человеческие стволовые клетки.

Эксперименты показывают, что в химере можно создать практически любой орган – даже тот, который у подопытного животного не предусмотрен. Другой эксперимент этой же группы ученых показал, что подсадка в организм мыши стволовых крысиных клеток позволяет вырастить желчный пузырь, хотя у мышей этого органа эволюционно нет.

Еще в 2010 году японские ученые таким же образом создали для крысы поджелудочную железу. Команда Исписуа Бельмонте смогла вырастить в организме мыши также крысиное сердце и глаза. Двадцать пятого января один из его коллег сообщил в статье в журнале Nature, что его группе удалось провести обратный эксперимент – вырастить в крысе поджелудочную железу для мыши и успешно ее пересадить. Орган исправно функционировал больше года.

Важное условие для успеха экспериментов с химерами – правильное соотношение размеров соединяемых организмов. Например, ранее ученые пытались создать химеры свиней и крыс, но эксперимент оказался безуспешным. Гораздо более совместимыми являются люди, коровы и свиньи. Команда Исписуа Бельмонте предпочла использовать для создания химеры с человеком свинью просто потому, что использовать последних дешевле, чем коров.

Гибриды среди нас


История знала случаи пересадки людям некоторых частей тела от животных, в том числе и свиней, и раньше. Еще в XIX веке американский доктор Ричард Киссам успешно пересадил юноше роговицу глаза, которую взял у шестимесячного поросенка. Но полноценное создание химер началось в 1960-е годы, когда американская ученая Беатрис Минц получила лабораторным путем первый гибридный организм, соединив клетки двух разных видов мышей – белой и черной. Чуть позже другая ученая – француженка Николь ле Дуарен соединила зародышевые слои куриного и перепелиного эмбриона и в 1973 году выпустила работу о развитии гибридного организма. В 1988 году Ирвинг Вейсман из Стэнфордского университета создал мышь с человеческой иммунной системой (для исследований СПИДа), а впоследствии вживлял человеческие стволовые клетки в мышиный мозг для исследований по нейробиологии. В 2012 году на свет появились первые химеры-приматы: в Национальном центре исследования приматов в Орегоне ученые создалимакак, содержащих шесть различных ДНК.

Более того, история уже знает и случаи людей-химер, хотя общество их таковыми не называет, да и сами они могут об этом не догадываться. В 2002 году жительница Бостона Карен Киган прошла генетический тест, чтобы определить, можно ли ей пересаживать почку одного из ее родственников. Анализы показали невозможное: ДНК пациентки не соответствовала ДНК ее биологических сыновей. Оказалось, что у Киган был врожденный химеризм, который развивается у эмбриона в результате сбоя в процессе оплодотворения: ее организм содержал два генетических набора, один у клеток крови, другой – у клеток в тканях ее тела.

Формально химерой можно назвать и человека, которому пересадили чужой костный мозг, – например, при лечении лейкемии. В некоторых случаях в крови такого пациента можно найти клетки и с его исходной ДНК, и с ДНК донора. Еще один пример – так называемый микрохимеризм. В теле беременной женщины может наблюдаться перемещение стволовых клеток плода, несущих его геном, в органы будущей матери – почки, печень, легкие, сердце и даже мозг. Ученые предполагают, что это может случаться чуть ли не при каждой беременности, а такие клетки могут оставаться на новом месте в течение всей жизни женщины.

Но во всех этих случаях химеры образуются (естественно или нет) от двух человек. Другое дело – совмещение человека с животным. Трансплантация тканей от животных человеку может сделать его уязвимым для новых болезней, к чему наша иммунная система не готова. Многих также пугает возможность наделения зверей людскими качествами, вплоть до повышения уровня сознания. Ученые пытаются заверить общество и власти в том, что подобные эксперименты будут жестко контролироваться лабораториями и использоваться лишь во благо. Национальные институты здоровья США (NIH) никогда не финансировали такие разработки, ссылаясь на их неэтичность. Но в августе 2016 года представители NIH заявили, что могут пересмотреть мораторий (решение пока не принято).

В отличие от NIH американская армия щедро финансирует подобные эксперименты. По словам кардиолога из Миннесотского университета Дэниела Гэрри, его проект по созданию химер, в рамках которого была получена свинья с сердцем от другой особи, недавно получил от военных грант $1,4 млн на эксперименты по выращиванию в свинье человеческого сердца.

Успехи биологии и медицины в новейшей истории существенно продлили среднюю продолжительность жизни и избавили мир от дамоклова меча многих смертельных болезней. Но не все болезни побеждены, да и жизнь человека, тем более активная, все еще кажется нам слишком короткой. Даст ли наука шанс сделать следующий рывок?

Новая кожа Сотрудник лаборатории достает из ванночки полоску искусственно выращенного эпидермиса. Ткань создали в дерматологическом институте в итальянском городе Помеция, Италия, под руководством профессора Микеле де Лука.

Основания для оптимизма, конечно же, есть. В наши дни в науке наметилось несколько направлений, которые, возможно, позволят в близком или дальнем будущем превратить Homo sapiens в более долговечную и надежную мыслящую конструкцию. Первое — это создание электронно-механических «подпорок» для недужного тела. Речь идет о роботизированных бионических протезах конечностей, достоверно воспроизводящих человеческую локомоторику, или даже целых экзоскелетах, которые смогут подарить радость движения парализованным.


Выращивание нервной ткани — наиболее сложно из-за многообразия типов составляющих ее клеток и их сложной пространственной организации. Однако на сегодня существует успешный опыт выращивания аденогипофиза мыши из скопления стволовых клеток.

Эти хитроумные изделия дополнит нейромашинный интерфейс, который позволит считывать команды прямо с соответствующих участков головного мозга. Действующие прототипы подобных устройств уже созданы, теперь главное — их совершенствование и постепенное удешевление.

Вторым направлением можно считать исследования генетических и прочих микробиологических процессов, вызывающих старение. Познание этих процессов, возможно, в будущем даст возможность затормозить увядание организма и продлить активную жизнь за вековой предел, а возможно, и далее.


Поиски ведутся в нескольких направлениях. Одно из них — бионический глаз: электронная камера плюс чип, имплантированный в сетчатку. Есть и некоторые успехи в выращивании сетчатки (пока у мышей).

И наконец, к третьему направлению относятся исследования в области создания подлинных запчастей к человеческому телу — тканей и органов, которые структурно и функционально будут мало чем отличаться от природных и позволят своевременно «отремонтировать» организм, пораженный тяжелой болезнью или возрастными изменениями. Известия о новых шагах в этой области приходят сегодня едва ли не ежедневно.

Запускаем печать

Базовая технология выращивания органов, или тканевой инженерии, заключается в использовании эмбриональных стволовых клеток для получения специализированных клеток той или иной ткани, например гепатоцитов — клеток паренхимы (внутренней среды) печени. Эти клетки затем помещаются внутрь структуры соединительной межклеточной ткани, состоящей преимущественно из белка коллагена.


Наряду с созданием электронно-механических протезов ведется поиск более естественного имплантата, объединяющего в себе выращенные ткани сердечной мускулатуры с наноэлектронной системой контроля.

Таким образом обеспечивается заполнение клетками всего объема выращиваемого органа. Матрицу из коллагена можно получить путем очистки от клеток донорской биологической ткани или, что гораздо проще и удобнее, создать ее искусственным путем из биоразрушаемых полимеров или специальной керамики, если речь идет о кости. В матрицу помимо клеток вводятся питательные вещества и факторы роста, после чего клетки формируют единый орган или некую «заплатку», призванную заместить собой пораженную часть.

Правда, выращивание искусственной печени, легкого и других жизненно важных органов для пересадки человеку сегодня пока недостижимо, в более простых случаях такая методика успешно применяется. Известен случай пересадки пациентке выращенной трахеи, осуществленной в РНЦ хирургии им. Б.В. Петровского под руководством итальянского профессора П. Маккиарини. В данном случае в качестве основы была взята донорская трахея, которую тщательно очистили от клеток. На их место были введены стволовые клетки, взятые из костного мозга самой пациентки. Туда же были помещены факторы роста и фрагменты слизистой оболочки — их также позаимствовали из поврежденной трахеи женщины, которую предстояло спасти.


Проведены успешные эксперименты по имплантации крысе легкого, выращенного на очищенной от клеток донорской матрице.

Недифференцированные клетки в таких условиях дали начало клетками дыхательного эпителия. Выращенный орган имплантировали пациентке, причем были приняты специальные меры для проращивания имплантата кровеносными сосудами и восстановления кровообращения.

Впрочем, уже существует метод выращивания тканей без применения матриц искусственного или биологического происхождения. Метод нашел воплощение в устройстве, известном как биопринтер. В наши дни биопринтеры «выходят из возраста» опытных образцов, и появляются мелкосерийные модели. Например, аппарат компании Organovo способен распечатать фрагменты тканей, содержащих 20 и более клеточных слоев (причем туда входят клетки разных типов), объединенных межклеточной тканью и сетью кровеносных капилляров.


До выращивания целой искусственной печени еще далеко, однако фрагменты ткани печени человека уже получены методом выращивания на матрице из биоразлагаемых полимеров. Такие имплантаты смогут помочь в восстановлении пораженных участков.

Соединительная ткань и клетки собираются воедино по той же технологии, которую используют при трехмерной печати: движущаяся головка, позиционирующаяся с микронной точностью в трехмерной сети координат, «выплевывает» в нужную точку капельки, содержащие либо клетки, либо коллаген и другие вещества. Разные производители биопринтеров сообщили, что их устройства уже способны распечатывать фрагменты кожи подопытных животных, а также элементы почечной ткани. Причем в результате удалось достичь правильного расположения клеток разных типов друг относительно друга. Правда, эпохи, когда принтеры в клиниках будут способны создавать органы разного назначения и больших объемов, придется еще подождать.


Мозг под замену

Развитие темы запчастей для человека неизбежно приводит нас к теме самого сокровенного — того, что делает человека человеком. Замена мозга — пожалуй, самая фантастическая идея, касающаяся потенциального бессмертия. Проблема, как нетрудно догадаться, в том, что мозг — похоже, самый сложный из известных человечеству материальных объектов во Вселенной. И, возможно, один из самых непонятных. Известно, из чего он состоит, но очень мало известно о том, как он работает.


Новая кожа. Сотрудник лаборатории достает из ванночки полоску искусственно выращенного эпидермиса. Ткань создали в дерматологическом институте в г. Помеция, Италия, под руководством профессора Микеле де Лука.

Таким образом, если мозг удастся воссоздать как совокупность нейронов, устанавливающих друг с другом связи, надо еще придумать, как поместить в него всю необходимую человеку информацию. Иначе в лучшем случае мы получим взрослого человека с «серым веществом» младенца. Несмотря на всю сверхфантастичность конечной цели, наука активно работает над проблемой регенерации нервной ткани. В конце концов, цель может быть и скромнее — например, восстановление части мозга, разрушенной в результате травмы или тяжелого заболевания.

Проблема искусственной регенерации мозговой ткани усугубляется тем, что мозг обладает высокой гетерогенностью: в нем присутствует множество типов нервных клеток, в частности тормозные и возбуждающие нейроны и нейроглия (буквально — «нервный клей») — совокупность вспомогательных клеток нервной системы. Кроме того, разные типы клеток определенным образом расположены в трехмерном пространстве, и это расположение необходимо воспроизвести.


Это тот самый случай, когда технологии выращивания тканей уже работают в медицине и спасают жизни людей. Известны случаи успешной имплантации трахеи, выращенной на донорской матрице из клеток спинного мозга пациента.

Нервный чип

В одной из лабораторий знаменитого Массачусетского технологического института, известного своими разработками в сфере информационных технологий, подошли к созданию искусственной нервной ткани «по-компьютерному», применив элементы технологии изготовления микрочипов.

Исследователи из Бостона взяли смесь нервных клеток, полученных из первичной коры мозга крысы, и нанесли их на тончайшие пластины гидрогеля. Пластины образовали своего рода сэндвич, и теперь задача состояла в том, чтобы вычленить из него отдельные блоки с заданной пространственной структурой. Получив такие прозрачные блоки, ученые намеревались изучать процессы возникновения нервных связей внутри каждого из них.


Технология пересадки человеку мочевого пузыря, выращенного на коллагеновой матрицы из мочевого пузыря или тонкой кишки животного происхождения, уже создана и имеет положительную практику применения.

Задача была решена с помощью фотолитографии. На пласты гидрогеля накладывались пластиковые маски, которые позволяли свету воздействовать лишь на определенные участки, «сваривая» их воедино. Так удалось получить разнообразные по размерам и толщине композиции клеточного материала. Изучение этих «кирпичиков» со временем может привести к созданию значимых фрагментов нервной ткани для использования в имплантах.

Если инженеры MIT подходят к изучению и воссозданию нервной ткани в инженерном стиле, то есть механически формируя нужные структуры, то в Центре биологии развития RIKEN в японском городе Кобе ученые под руководством профессора Йошики Сасаи нащупывают другой путь — evo-devo, путь эволюции развития. Если плюрипотентные стволовые клетки эмбриона могут при делении создавать самоорганизующиеся структуры специализированных клеток (то есть разнообразные органы и ткани), то нельзя ли, постигнув законы такого развития, направлять работу стволовых клеток для создания имплантатов уже с природными формами?


В деле выращивания костей и хрящей на матрицах достигнут большой прогресс, однако восстановление нервной ткани спинного мозга — дело будущего.

И вот главный вопрос, на который намеревались найти ответ японские биологи: насколько зависит развитие конкретных клеток от внешних факторов (например, от контакта с соседними тканями), а в какой степени программа «зашита» внутри самих стволовых клеток. Исследования показали, что есть возможность вырастить из изолированной группы стволовых клеток заданный специализированный элемент организма, хотя внешние факторы играют определенную роль — например, необходимы определенные химические индуцирующие сигналы, заставляющие стволовые клетки развиваться, скажем, именно как нервная ткань. И для этого не понадобится никаких поддерживающих структур, которые придется наполнять клетками — формы возникнут сами в процессе развития, в ходе деления клеток.

В новом теле

Вопрос о пересадке мозга, коль скоро мозг является вместилищем интеллекта и самого человеческого «я», по сути, не имеет смысла, так как если мозг уничтожен, то воссоздать личность невозможно (если только со временем не научатся делать «резервные копии» сознания). Единственное, что могло бы иметь резон - это пересадка головы, а точнее — пересадка тела голове, у которой с телом проблемы. Однако при невозможности на современном уровне медицины восстановления спинного мозга, тело с новой головой останется парализованным. Правда, по мере развития тканевой инженерии, возможно, нервную ткань спинного мозга можно будет восстанавливать с помощью стволовых клеток. На время операции мозг придется резко охлаждать для предотвращения смерти нейронов.

По запатентованной Сасаи методике японцам удалось вырастить трехмерные структуры нервной ткани, первой из которых стала полученная из эмбриональных стволовых клеток мышей сетчатка глаза (так называемый зрительный бокал), которая состояла из функционально различных типов клеток. Они были расположены так, как предписывает природа. Следующим достижением стал аденогипофиз, не просто повторяющий структуру природного, но и выделяющий при пересадке мыши необходимые гормоны.


Разумеется, до полнофункциональных имплантов нервной ткани, а тем более участков человеческого мозга еще очень и очень далеко. Однако успехи искусственной регенерации тканей с применением технологий эволюции развития указывают путь, по которому пойдет вся регенеративная медицина: от «умных» протезов — к композитным имплантатам, в которых готовые пространственные структуры «проращиваются» клеточным материалом, и далее — к выращиванию запасных частей для человека по тем же законам, по которым они развиваются в естественных условиях.

Еще вчера казалось, что производство запасных органов для нашего хрупкого тела - занятная фантастика, которая, кто знает, может, и реализуется в далеком будущем. А сегодня мы беседуем с человеком, благодаря которому выращивание новых органов стало реальностью и спасением для первых пациентов. Не менее удивительным кажется, что самые новаторские операции по трансплантации созданных в лаборатории органов и самые передовые исследования в области регенеративной медицины проводятся не где-нибудь, а у нас в Краснодаре

Паоло Маккиарини часто произносит слово «фантастика», когда хочет что-нибудь похвалить. Темпераментный, как герой итальянского фильма, он легко переходит от отчаянных восклицаний вроде «Все хотят моей смерти!» (это о коллегах-завистниках) к бурному восхищению перспективами исследований, сулящих спасение новых жизней.

Мы с Паоло ужинаем в одном из ресторанов Олимпийской деревни в Сочи - здесь проходит конференция «Генетика старения и долголетия», на которую со всего мира съехались крупнейшие специалисты в области борьбы со старением.

Несмотря на украинские события, от участия никто не отказался, а что касается Маккиарини, ему и границу пересекать не пришлось. Вообще-то он ученый планетарного масштаба - чуть ли не потенциальный лауреат Нобелевской премии.

Но уже несколько лет Маккиарини руководит Центром регенеративной медицины Кубанского медицинского университета. Переманить профессора в Краснодар сумели с помощью мегагранта правительства РФ в 150 миллионов рублей. На эти деньги и был создан центр.

Здесь мне не надо гоняться за пожертвованиями и можно сосредоточиться на спасении пациентов. Кстати, записывайте - я обращаюсь к мистеру Путину: прошу выдать мне русский паспорт, как Депардье! - смеется Маккиарини.

В обмен на новое сердце для него?

Политику здесь на конференции воспринимают под довольно необычным углом зрения.

У нас есть пациент из Крыма, который ждет трансплантации трахеи с 2011 года, - рассказывает Паоло. - Я несколько раз его смотрел, но прооперировать не мог: ему пришлось бы платить за это, больница не может принять бесплатно иностранного гражданина. Но сейчас Россия захватила… ой, то есть присоединила Крым, и мы сможем сделать ему операцию бесплатно - вот этому я очень рад! В начале июня будем оперировать.

Как выращивают органы

Технология производства трахеи, разработанная Маккиарини, - гордость и главное достижение регенеративной хирургии, новаторского направления медицины, которое занимается выращиванием органов. В 2008 году он первым в мире провел операцию по пересадке пациентке трахеи, выращенной из ее собственных стволовых клеток на донорском каркасе в биореакторе, в 2009-м осуществил другую уникальную операцию: на этот раз орган был сформирован внутри тела пациента без использования биореактора. Наконец, в 2011 году провел первую операцию по трансплантации человеческого органа, целиком выращенного в лаборатории на искусственном каркасе, то есть без использования донорских органов.

В Россию Маккиарини впервые приехал в 2010-м - по приглашению фонда «Наука за продление жизни» провел в Москве мастер-класс по регенеративной медицине. Вскоре он сделал первую в России операцию по трансплантации трахеи девушке, которая после автомобильной катастрофы не могла разговаривать и даже ходить из-за проблем с дыханием. Девушка выздоровела, Маккиарини выиграл мегагрант и стал проводить свои операции у нас в стране, все время добавляя в них что-то новое. Так, недавно он вместе с искусственной трахеей пересадил пациентке часть гортани.

Как можно вырастить орган отдельно от самого человека? - не могу я взять в толк.

Вообще говоря, это невозможно. Из клеток взрослого человека целый орган вырастить не получится. Помимо клеток нужно кое-что еще - донорский орган или искусственный каркас.

Вначале мы делали так: брали орган донора - человека или животного (обычно свиньи) и освобождали его от генетического материала, то есть от клеток. Для этого орган помещали в специальную жидкость, растворяющую мышечные ткани и другие клетки, чтобы остался лишь каркас из соединительной ткани, сетка волокон. У любого органа есть каркас, придающий ему форму, - называется внеклеточный матрикс. Каркас очищенного от клеток органа, взятого у свиньи, не отторгается иммунной системой человека, но там все равно есть проблемы: можно случайно занести вирус, ну, и у многих людей это вызывает неприятие, например у мусульман. Так что лучше всего было использовать каркас человеческого сердца, взятого у погибшего донора.

Но в 2011 году мы освоили технологию, не требующую доноров вообще, - создание синтетического каркаса. Он производится по размерам пациента, это такая трубка из упругого и пластичного нанокомпозитного материала. Это настоящий прорыв: синтетический каркас освобождает нас от доноров - а для детей, например, их чаще всего и не найти, - снимает вопросы биоэтики и делает операцию намного более доступной.

Но как из этой трубки сделать живой работающий орган?

В биореакторе!

Это что-то вроде биопринтера?

Нет, - смеется Маккиарини, - биопринтер позволяет производить простые ткани, сосуды например, но не сложные органы. А биореактор - это устройство, в котором созданы оптимальные условия для роста и размножения клеток. Он обеспечивает им питание, дыхание, отводит продукты обмена. В биореакторе мы засеиваем на каркас мононуклеары - клетки пациента, выделенные из костного мозга. Это такой вид стволовых клеток, способных превратиться в специализированные клетки разных органов. Каркас в течение 48 часов обрастает этими клетками, а мы побуждаем их превратиться в клетки трахеи. И орган готов, его можно пересаживать пациенту. Организм его не отторгает, ведь он выращен из клеток самого пациента.

Мозг, сердце и пенис

Вы ведь не собираетесь ограничиваться трахеей?

Следующими будут пищевод и диафрагма. Сейчас мы испытываем их на животных. А потом вырастим первое работающее сердце - видимо, в коллаборации с Техасским институтом сердца.

На Кубани есть питомник обезьян для медицинских исследований - если все получится, мы будем испытывать на них работу выращенного в лаборатории сердца. Вообще говоря, здесь многие такие вещи сделать гораздо проще, чем в Европе или США. Так что через несколько лет эта технология дойдет до клиники. Есть хорошие шансы, что первое человеческое сердце будет выращено в России.

А какие органы требуются чаще всего?

Ко мне часто обращаются со странными запросами. Однажды президент, кажется, Всемирного общества гомосексуалистов попросил сделать ему пенис.

Второй пенис - интересная мысль!

Да нет, единственный, почему-то его не было. Но я не смог ему помочь, ничего в пенисах не понимаю. И матку просили сделать. Люди ведь хотят не только продления жизни, и несчастны они не только из-за болезней - им не дают покоя всякие безумные желания.

Но мы не занимаемся всеми этими модными вещами. Что мы действительно пытались сделать - это вырастить яички, потому что очень много детей страдает раком яичек или их врожденными аномалиями. Но, к сожалению, стволовые клетки не получается превратить в клетки яичек, и мы вынуждены были остановить эти исследования.

А вообще, конечно, мы стараемся работать над тем, что больше всего нужно нашим пациентам. Вот Елена Губарева сейчас делает очень важный проект по выращиванию диафрагмы. Если все получится, это спасет тысячи детей, которые рождаются без диафрагмы и умирают из-за этого.

Какие органы сложнее всего будет вырастить?

Сердце, печень, почки. То есть вырастить их нетрудно - сегодня вполне реально создать любые органы и ткани. А вот заставить их нормально функционировать, вырабатывать необходимые организму вещества очень сложно. Выращенные в лаборатории, они перестают работать уже через несколько часов. Проблема в том, что мы недостаточно хорошо понимаем, как они работают.

Но, может, нам и не нужно будет их выращивать - я мечтаю о том, чтобы использовать стволовые клетки для восстановления работоспособности этих органов. Можно ведь стимулировать процессы регенерации в самом организме. Это просто фантастически привлекательное и дешевое решение: любой человек даже в самой бедной стране имеет собственные стволовые клетки, и не нужно никаких операций по трансплантации органов!

Много нужно времени, чтобы вырастить человеческий орган?

Зависит от его сложности. Трахею мы выращиваем за 3-4 дня, для сердца потребуется 3 недели.

А мозг можно вырастить?

Да, я мечтаю поймать некоторых политиков и заменить им мозг. И яйца заодно. Но если серьезно, выращивание мозга входит в мои планы.

Да ведь в мозгу главное - бесчисленные связи между нейронами, как их воссоздать?

Все обычно переусложняют эту проблему, все гораздо проще. Речь, конечно, не о замене всего мозга. Допустим, я подстрелил вас. У вас ранение в голову, вы потеряли часть мозга, но выжили. А если заменить эту нефункционирующую часть субстратом, функция которого - вызывать рост нейронов, притягивая их из других частей мозга? Тогда поврежденная часть со временем восстановится, постепенно вовлекаясь в деятельность мозга и обрастая связями. Это могло бы полностью изменить жизнь тысяч пациентов!

Мечты и разочарования

Как к вашим успехам относятся коллеги?

Ох, сложная это тема, - грустнеет Маккиарини. - Когда вы делаете что-то совсем новое, впервые в истории, вас всегда ругают. И пройдет столько времени, прежде чем люди примут то, что вы делаете! Меня до сих пор критикуют, и жестко, ведь я делаю безумные, небывалые вещи. Люди бывают очень ревнивы к успеху коллег: меня много атаковали, пытались максимально осложнить мне работу, иногда очень грязными способами.

Что самое сложное в вашей работе и жизни?

В моей жизни? Да у меня нет частной жизни. Все так запущено! Самое сложное - отнюдь не наука, а эти атаки коллег, их ревность. Если б они хотя бы делали это с уважением! Нет, тотальное неуважение, никаких человеческих отношений, только конкуренция. Я опубликовал десятки статей в ведущих научных журналах, но мне по-прежнему заявляют, что у меня нет доказательств, что наши методы работают. Они готовы критиковать все на свете, даже как я в туалет хожу.

У меня столько проблем из-за этой ревности, на меня все время адски давят. Наверное, это цена, которую должен заплатить каждый первопроходец. Но ведь мы спасем жизни - это так прекрасно, это стоит любых атак… Стойте, я хочу тирамису! Тирамису! Тирамису! И американо, пожалуйста.

О чем вы мечтаете?

В личном плане? Сесть в лодку и уплыть подальше от всех. И больше никаких контактов с этим миром. Только я и моя собака - мне достаточно. А в профессиональном плане мечтаю о том, чтобы спасать людей без трансплантации органов - путем клеточной терапии. Вау! Это было бы фантастически, просто фантастически здорово!

Когда технология выращивания органов станет массово доступной в развитых странах?

Технология выращивания трахеи уже отработана почти до совершенства. Если мы будем продолжать клинические испытания в Краснодаре, года через два накопится достаточно доказательств, что этот метод безопасен и эффективен, и его начнут применять в других местах. Это зависит от числа пациентов прежде всего, ну, и от многих других вещей. А я буду заниматься пищеводом, диафрагмой, сердцем… Думаю, прогресс будет быстрым, особенно в России. Запасайтесь терпением и ждите - сами все увидите.

Интересно, а новое тело для моего мозга можно будет вырастить?

Это еще зачем?

Чтобы продлить жизнь и молодость, конечно.

Не понимаю, зачем вам опять молодое тело, чтобы покорить тысячи девушек? Скучно же жить слишком долго.

Что-то мне пока не становится скучно, скорей наоборот.

Ну не знаю. Меня уже тошнит от этой жизни! Вы, русские, всегда призываете всех бороться со старением. Вы философы и мечтатели, вам кажутся ужасно важными чисто философские проблемы.

Да что ж тут философского, что может быть естественней любви к жизни?

Вы хотите бороться с природой, а я считаю, наши тела уже совершенны. Посмотрите на себя. Нет, лучше не на себя, а на девушек - природа сотворила их совершенными, кто я такой, чтобы бороться с ней?

Вы уже боретесь, делая операции.

Надо же, какой необычный у нас разговор начался. Такие только в России случаются…

Мы спорили еще долго - пока нас не выставили из закрывающегося ресторана.

Кого еще удалось сманить в Россию с помощью мегагрантов

Цель программы мегагрантов - привлечь ведущих мировых ученых в российские вузы. Уже состоялось четыре таких конкурса. Первый прошел в 2010-м, последний - в 2014 году. В резуль-тате мегагранты получили 163 российских и зарубежных ученых. Среди них немало знаменитостей, есть даже несколько нобелевских лауреатов. «РР» знакомит с некоторыми из них

Сидней Альтман

Лауреат Нобелевской премии по химии 1989 года, профессор Йеля, займется разработкой антибактериальных и антивирусных препаратов в Институте химической биологии и фундаментальной медицины СО РАН в Новосибирске.

Йорн Тиде

Известный немецкий специалист в области морской геологии и глубоководного бурения, возглавил лабораторию «Палеогеография и геоморфология полярных стран и Мирового океана» на факультете географии и геоэкологии СПбГУ, которая занимается изучением изменений климата в Арктике и обоснованием права России на арктический шельф.

Рональд Инглхарт

Политолог и социолог из США, профессор Мичиганского университета, занимается сравнением ценностных ориентиров в разных странах; в России работает в Высшей школе экономики.

Симомура Осаму

Лауреат Нобелевской премии по химии 2008 года, создатель зеленых светящихся кроликов и поросят, исследует биолюминесценцию в красноярском Сибирском федеральном университете.

Антонио Луке Лопес

Физик, изобретатель и миллионер, профессор Мадридского университета, занимается в питерском физтехе разработкой новых типов солнечных батарей.

Марио Биаджоли

Профессор факультета исследований науки и технологий в Калифорнийском университете в Дэвисе, руководит исследованиями социологии научного и технологического предпринимательства в Европейском университете в Санкт-Петербурге.

Павел Певзнер

Директор программы по биоинформатике и системной биологии в Университете Калифорнии (Сан-Диего), директор Национального центра по вычислительной масс-спектрометрии, создает уникальную для России лабораторию алгоритмической биологии, где ученые займутся чтением геномов.

Прежде, чем приступить к обсуждению темы статьи, хочу сделать небольшой экскурс, что представляет собой организм человека. Это поможет понять, как важна работа любого звена в сложной системе человеческого организма, что может произойти при сбое, и как современная медицина пытается решить проблемы, если какой-либо орган выходит из строя.

Организм человека как биологическая система

Человеческий организм – это сложная биологическая система, имеющая особую структуру и наделенная специфическими функциями. Внутри этой системы различают несколько уровней организации. Высшая интеграция – это организменный уровень. Далее по нисходящей идут системный, органный, тканевой, клеточный и молекулярный уровни организации. От согласованной работы всех уровней системы зависит слаженная работа всего организма человека.
Если какой-то орган или система органов работает неправильно, то нарушения касаются и более низших уровней организации, таких как ткани и клетки.

Молекулярный уровень – это первый кирпичик. Как следует из названия, весь организм человека, как и всего живого, состоит из бесчисленного множества молекул.

Клеточный уровень можно себе представить как разнообразный компонентный состав молекул, образующих разные клетки.

Клетки, объединенные в разные по морфологии и функционированию ткани, образуют тканевой уровень.

В состав органов человека входят разнообразные ткани. Они обеспечивают нормальное функционирование какого-либо органа. Это – органный уровень организации.

Следующий уровень организации – системный. Определенные анатомически объединенные органы выполняют более сложную функцию. Например, пищеварительная система, состоящая из различных органов, обеспечивает переваривание поступающей в организм пищи, всасывание продуктов пищеварения и выведение неиспользованных остатков.
И высший уровень организации – организменный уровень. Все системы и подсистемы организма работают, как хорошо настроенный музыкальный инструмент. Согласованная работа всех уровней достигается благодаря механизму саморегуляции, т.е. поддержки на определенном уровне различных биологических показателей. При малейшем дисбалансе в работе какого-либо уровня организм человека начинает работать с перебоями.

Что такое стволовые клетки?

Термин «стволовые клетки» был введен в науку русским гистологом А. Максимовым в 1908 году. Стволовые клетки (СК) – это неспециализированные клетки. Их еще рассматривают как незрелые клетки. Они имеются практически у всех многоклеточных, включая человека. Путем деления клетки себя воспроизводят. Они способны превращаться в специализированные клетки, т.е. из них могут образовываться различные ткани и органы.

Самое большое количество СК у младенцев и детей, в юности количество стволовых клеток в организме уменьшается в 10 раз, а зрелому возрасту – в 50 раз! Значительное уменьшение числа СК в ходе старения, а также тяжелых заболеваний уменьшает возможности организма к самовосстановлению. Отсюда следует неприятный вывод: жизнедеятельность многих важных систем органов снижается.

Стволовые клетки и будущее медицины

Ученые- медики давно обратили внимание на пластичность СК и теоретическую возможность выращивать из них различные ткани и органы человеческого организма. Работы по изучению свойств СК начались во второй половине прошлого века. Как всегда, первые исследования проводились на лабораторных животных. К началу нашего века начались попытки, использовать СК для выращивания тканей и органов человека. Хочу рассказать о наиболее интересных результатах в этом направлении.

Японским ученым в 2004 г. удалось вырастить в лабораторных условиях капиллярные кровеносные сосуды из СК.

В следующем году американским исследователям из университета штата Флорида удалось вырастить из СК клетки головного мозга. Ученые заявили, что такие клетки способны вживляться в головной мозг, и их можно использовать при лечении таких заболеваний, как болезни Паркинсона и Альцгеймера.

В 2006 швейцарские ученые из университета Цюриха вырастили в своей лаборатории клапаны сердца человека. Для этого эксперимента использовались СК из околоплодной жидкости. Доктор С. Хёрстрап полагает, что эта методика может быть использована для выращивания сердечных клапанов для еще не родившегося ребенка, у которого обнаружены дефекты сердца. После рождения младенцу можно пересадить новые клапаны, выращенные из стволовых клеток околоплодной жидкости.

В том же году американские медики вырастили в лабораторных условиях целый орган – мочевой пузырь. СК были взяты у человека, для которого выращивался этот орган. Доктор Э. Атала, директор института регенеративной медицины, рассказал, что клетки и специальные вещества помещаются в особую форму, которая остается в инкубаторе в течение нескольких недель. После этого готовый орган пересаживается пациенту. Такие операции делаются сейчас в обычном режиме.

В 2007 на международном медицинском симпозиуме в Иокагаме были представлен доклад японских специалистов из университета Токио об удивительном научном эксперименте. Из единственной стволовой клетки, взятой из роговицы и помещенной в питательную среду, удалось вырастить новую роговицу. Ученые намеревались приступить к клиническим исследованиям и в дальнейшем применять эту технологию при лечении глаз.

Японцам принадлежит пальма первенства в выращивании зуба из единственной клетки. СК пересадили на коллагеновый каркас и начали эксперимент. После выращивания зуб выглядел как естественный и имел все составляющие, включая дентин, сосуды, эмаль и т.д. Зуб был трансплантирован лабораторной мыши, прижился и функционировал нормально. Японские ученые видят большие перспективы применения этого метода в выращивании зуба из одной СК с последующей пересадкой его хозяину клетки.

Японским медикам из университета Киото удалось получить из СК ткани почек, надпочечников и фрагмент почечного канальца.

Ежегодно во всем мире миллионы людей умирают от заболеваний сердца, головного мозга, почек, печени, мышечной дистрофии и т.д. В их лечении могут помочь стволовые клетки. Однако, существует один момент, который может затормозить применение стволовых клеток в медицинской практике – это отсутствие международной законодательной базы: откуда можно брать материал, сколько его можно хранить, как должны взаимодействовать пациент и его доктор при использовании СК.

Вероятно, проведение медицинских экспериментов и разработка такого закона должны идти параллельно.

Уже сегодня технологии выращивания новых органов широко используются в медицине и позволяют осваивать новые методы изучения иммунной системы и различных заболеваний, а также снижают потребность в трансплантатах. Пациенты, которым сделали пересадку каких-либо органов, нуждаются в большом количестве токсических препаратов для того, чтобы подавлять свою иммунную систему; иначе их организм может отвергнуть пересаженный орган. Однако, благодаря развитию тканевой инженерии, пересадка органов может остаться в прошлом. Используя клетки самих пациентов в качестве материала для выращивания в лаборатории новых видов ткани, ученые открывают все новые технологии создания человеческих органов.

Выращивание органов -- перспективная биоинженерная технология, целью которой является создание различных полноценных жизнеспособных биологических органов для человека. Пока технология не применяется на людях.

Создание органов стало возможным чуть более 10 лет назад благодаря развитию биоинженерных технологий. Для выращивания используют стволовые клетки, взятые у пациента. Разработанная недавно технология ИПК (индуцированные плюрипотентные клетки) позволяет перепрограммировать стволовые клетки взрослого человека так, чтобы из них мог получиться любой орган.

Выращивание органов или тканей человека может быть, как внутренним, так и наружным (в пробирках).

Самый известный ученый в этой области - Энтони Атала, признанный Врачом года-2011, глава лаборатории в Институте регенеративной медицины Вейк Сити (США). Именно под его руководством 12 лет назад был создан первый искусственный орган - мочевой пузырь. Вначале Атала с коллегами создали искусственную матрицу из биосовместимых материалов. Затем взяли у пациента здоровые стволовые клетки мочевого пузыря и перенесли на каркас: одни изнутри, другие снаружи. Через 6-8 недель орган был готов к пересадке.

«Меня учили, что нервные клетки не восстанавливаются, - вспоминал позже Атала. - Как же мы были поражены, когда наблюдали, как пересаженный нами мочевой пузырь покрывается сеткой нервных клеток! Это значило, что он будет, как и должно, общаться с мозгом и функционировать как у всех здоровых людей. Удивительно, как много истин, которые еще 20 лет назад казались незыблемыми, опровергнуто, и теперь нам открыты ворота в будущее».

Для создания матрикса применяют донорские или искусственные ткани, даже углеродные нанотрубки и нити ДНК. Например, кожа, выращенная на каркасе из углеродных нанотрубок, в десятки раз прочнее стали - неуязвима, как у супермена. Только непонятно, как с таким человеком потом работать, например, хирургу. Кожу на каркасе из паучьего шелка (тоже прочнее стали) уже вырастили. Правда, человеку пока не пересаживали.

А самая, пожалуй, передовая технология - печатание органов. Придумал ее все тот же Атала. Метод годится для сплошных органов и особенно хорош для трубчатых. Для первых экспериментов использовали обычный струйный принтер. Позже, конечно, изобрели специальный.

Принцип прост, как все гениальное. Вместо чернил разного цвета картриджи заправлены суспензиями разных типов стволовых клеток. Компьютер вычисляет структуру органа и задает режим печати. Он, конечно, сложнее обычной печати на бумаге, в нем много-много слоев. За счет них и создается объем. Потом все это должно срастись. Уже удалось «напечатать» кровеносные сосуды, в том числе сложно ветвящиеся.

Кожа и хрящи. Их вырастить проще всего: достаточно было научиться размножать кожные и хрящевые клетки вне организма. Хрящи пересаживают уже около 16 лет, это достаточно распространенная операция.

Кровеносные сосуды. Вырастить их несколько сложнее, чем кожу. Ведь это трубчатый орган, который состоит из двух типов клеток: одни выстилают внутреннюю поверхность, а другие формируют наружные стенки. Первыми вырастили сосуды японцы под руководством профессора Кадзува Накао из Медицинской школы Киотского университета еще в 2004 году. Чуть позже, в 2006 году, директор Института стволовой клетки университета Миннесоты в Миннеаполисе (США) Катрин Верфэйл продемонстрировала выращенные клетки мышц.

Сердце. Шестнадцати детям в Германии уже пересажены клапаны сердца, выращенные на каркасе от свиного сердца. Двое детей живут с такими клапанами уже 8 лет, и клапаны растут вместе с сердцем! Американо-гонконгская группа ученых обещает начать пересадку «заплаток» для сердца после инфаркта через 5 лет, а английская команда биоинженеров через 10 лет планирует пересаживать целое новенькое сердце.

Почки, печень, поджелудочная железа. Как и сердце, это так называемые сплошные органы. В них самая высокая плотность клеток, поэтому вырастить их труднее всего. Уже решен главный вопрос: как сделать так, чтобы выращенные клетки составили форму печени или почки? Для этого берут матрицу в форме органа, помещают в биореактор и заполняют клетками.

Мочевой пузырь. Самый первый «орган из пробирки». Сегодня операции по выращиванию и пересадке собственного «нового» мочевого пузыря уже сделаны нескольким десяткам американцев.

Верхняя челюсть. Специалисты из Института регенеративной медицины при университете Тампере (Финляндия) умудрились вырастить верхнюю челюсть человека… в его собственной брюшной полости. Они перенесли стволовые клетки на искусственную матрицу из фосфата кальция и зашили мужчине в живот. Через 9 месяцев челюсть извлекли и поставили на место родной, удаленной из-за опухоли.

Сетчатка глаза, нервная ткань мозга. Достигнуты серьезные успехи, но пока о весомых результатах говорить рано.