Из каких грибов получают антибиотики. Грибные антибиотики

Антибиотики (от греч. anti - против, bios - жизнь) - продукты жизнедеятельности живых организмов, способные избирательно убивать микроорганизмы или подавлять их рост.

Выработка антибиотиков микроорганизмами является одним из важнейших проявлений микробного антагонизма (от греч. antagonizomai - борюсь, соперничаю). Наибольшее число микроорганизмов, обладающих антагонистическими свойствами, встречается в почве, особенно среди грибов, актиномицетов, спороносных бактерий. Антагонисты выявляются и в водоемах (реки, озера), а также среди представителей нормальной микрофлоры человека и животных. Например, кишечная палочка, бифидум-бактерии, лактобациллы в кишечнике людей (см. главу 6). Первые попытки практического использования микробного антагонизма принадлежат Л. Пастеру и И. И. Мечникову.

Л. Пастер в 1877 г. установил, что гнилостные бактерии подавляют рост сибиреязвенных бацилл при совместном выращивании их на питательной среде. В результате своих наблюдений Пастер высказал предположение о возможности использовать явление антагонизма бактерий для лечения инфекционных заболеваний.

И. И. Мечников (1894), изучая роль гнилостных бактерий кишечника, установил, что они систематически отравляют организм продуктами своей жизнедеятельности и это способствует преждевременному старению людей. Он обнаружил также, что молочно-кислые бактерии (болгарская палочка), находящиеся в простокваше, подавляют развитие гнилостных бактерий кишечника и предложил использовать антагонистические отношения микроорганизмов как один из методов борьбы со старостью.

Русские ученые В. А. Манассейн и А. Г. Полотебнов (1871-1872) за много лет до открытия антибиотиков применяли зеленую плесень пенициллиум для лечения гнойных ран и других поражений кожи.

Идея использовать один вид микроорганизмов в борьбе против другого (антагонизм) принесла существенные плоды. Из синегнойной палочки был получен первый антибиотик - пиоционаза (Р. Эммерих, О. Лев), но он не нашел широкого применения.

Начало учения об антибиотиках положено в 1929 г., когда английский ученый А. Флеминг обнаружил на чашках с посевами золотистого стафилококка лизис колоний вблизи случайно выросшей плесени Penicillium notatum. Флеминг установил, что фильтрат бульонной культуры плесени убивает не только стафилококки, но и другие микроорганизмы. В течение 10 лет Флеминг пытался получить пенициллин в химически чистом виде. Однако это ему не удалось. Очищенный препарат пенициллина, пригодный для клинического использования, получили английские исследователи Э. Чейн и Г. Флори в 1940 г.

Советский микробиолог З. В. Ермольева применила для получения пенициллина другой вид плесени - Penicillium crustosum (1942) и явилась одним из организаторов производства пенициллина во время Великой Отечественной войны.

Открытие пенициллина и успешное применение его для лечения гнойно-воспалительных процессов и ряда других инфекционных болезней побудило ученых к поиску новых антибиотиков, оказывающих губительное действие на различные микроорганизмы. В настоящее время получено свыше 2000 различных антибиотиков. Однако в клинической практике используются далеко не все, так как одни оказались токсичными, другие - неактивными в условиях организма человека.

Источником получения антибиотиков служат разнообразные микроорганизмы, обладающие антимикробной активностью. Антибиотики выделяют из плесневых грибов (пенициллин и др.), актиномицетов (стрептомицин, тетрациклин и др.), бактерий (грамицидин, полимиксины); вещества, обладающие антибиотическим действием, получают также из высших растений (фитонциды лука, чеснока) и тканей животных (лизоцим, экмолин, интерферон).

Антибиотики могут оказывать на микроорганизмы бактериостатическое и бактерицидное действие. Бактерицидное действие антибиотиков вызывает гибель микроорганизмов, а бактериостатическое - подавляет или задерживает их размножение. Характер действия зависит как от антибиотика, так и от его концентрации.

Классификация антибиотиков может быть основана на различных принципах: по источнику получения, химическому строению, механизму и спектру антимикробного действия, способу получения. Чаще всего классифицируют антибиотики по спектру антимикробного действия и источникам получения.

Механизм антимикробного действия антибиотиков разнообразен: одни нарушают синтез клеточной стенки бактерий (пенициллин, цефалоспорины), другие тормозят процессы синтеза белка в клетке (стрептомицин, тетрациклин, левомицетин), третьи угнетают синтез нуклеиновых кислот в бактериальных клетках (рифампицин и др.).

Для каждого антибиотика характерен спектр действия, т. е. препарат может оказывать губительное действие на определенные виды микроорганизмов. Антибиотики широкого спектра активны в отношении различных групп микроорганизмов (тетрациклины) или угнетают размножение многих грамположительных и грамотрицательных бактерий (стрептомицин и др.). Ряд антибиотиков действует в отношении более узкого круга микроорганизмов, например к полимиксину чувствительны преимущественно грамотрицательные бактерии.

По спектру действия антибиотики разделяют на антибактериальные, противогрибковые и противоопухолевые.

Антибактериальные антибиотики угнетают развитие бактерий и составляют наиболее обширную группу препаратов, различных по химическому составу. Для лечения инфекционных болезней, вызываемых бактериями, чаще используют антибиотики широкого спектра действия: тетрациклины, левомицетин, стрептомицин, гентамицин, канамицин, полусинтетические пенициллины и цефалоспорины и другие препараты.

Противогрибковые антибиотики (нистатин, леворин, амфотерицин В, гризеофульвин) оказывают угнетающее действие на рост микроскопических грибов, так как нарушают целостность цитоплазматической мембраны микробных клеток. Применяются для лечения грибковых заболеваний.

Противоопухолевые антибиотики (рубомицин, брунеомицин, оливомицин) угнетают синтез нуклеиновых кислот в животных клетках и используются для лечения различных форм злокачественных новообразований.

Биологическую активность антибиотиков измеряют в международных единицах действия (ЕД). За единицу активности антибиотика принимают наименьшее количество препарата, которое оказывает антимикробное действие на чувствительные к нему тест-бактерии (например, для пенициллина - золотистый стафилококк, стрептомицина - кишечная палочка и т. п.). В настоящее время единицы активности антибиотиков выражают в микрограммах * чистого препарата. Так, за единицу активности пенициллина принимают 0,6 мкг, а для большей части антибиотиков 1 ЕД соответствует 1 мкг (стрептомицин и др.).

* (1 мкг - 10 -6 г. )

В нашей стране создана мощная промышленность по производству антибиотиков. Природные антибиотики получают биосинтетическим путем: штаммы-продуценты грибов, актиномицетов, бактерий выращивают в жидкой питательной среде соответствующего состава, при определенном значении рН, оптимальной температуре и аэрации. Антибиотические вещества являются конечными продуктами метаболизма микроорганизмов и продуцируются клетками в питательную среду, откуда их извлекают химическими методами.

Изучение химической структуры антибиотиков позволило получать синтетические препараты методом химического синтеза (левомицетин).

Большим достижением является разработка методов получения полусинтетических антибиотиков, основанных на изменении химической структуры природного препарата. В результате этого удалось расширить спектр антимикробного действия, устранить некоторые недостатки природных антибиотиков. В последние годы в клинической практике широко применяют полусинтетические пенициллины, цефалоспорины, тетрациклины, рифампицин и другие препараты.

Антибиотикотерапия иногда может сопровождаться осложнениями со стороны макроорганизма, а также вызывать изменения различных свойств микроорганизмов.

Возможные осложнения при антибиотикотерапии . Некоторые антибиотики (пенициллин, стрептомицин и др.), введенные в организм больного, вызывают состояние повышенной чувствительности (аллергия), нарастающее по мере применения препарата. Аллергические реакции развиваются в виде сыпи-крапивницы, отеков век, губ, носа, дерматитов. Наиболее грозным осложнением является анафилактический шок (см. главу 13), от которого может наступить смерть больного * .

* (Чем лучше очищен антибиотик от балластных веществ, тем он реже и в меньшей степени вызывает выраженные аллергические акции. )

Внимание! Прежде чем применять антибиотик парентерально, необходимо выявить отсутствие повышенной чувствительности к нему организма больного. Это определяют с помощью внутрикожной пробы с данным препаратом: в кожу внутренней стороны предплечья вводят 0,1 мл антибиотика и наблюдают в течение 20-30 мин. Если реакция положительная (диаметр папулы более 1 см и большая зона красноты), то антибиотик вводить нельзя.

Введение в организм больших доз антибиотиков широкого спектра действия, как правило, сопровождается и гибелью представителей нормальной микрофлоры дыхательных путей, кишечника и других органов. Это приводит к изменению обычных антагонистических отношений между микроорганизмами в естественных условиях. В результате этого условно-патогенные бактерии (стафилококки, протей) и грибы рода Candida, устойчивые к этим антибиотиком, могут активизироваться и вызывать вторичные инфекции. Так возникают грибковые поражения - кандидозы кожи, слизистых оболочек, внутренних органов; дисбактериозы (нарушения нормального состава микрофлоры).

Для предотвращения развития кандидамикозов антибиотики вводят с противогрибковыми препаратами, например нистатином и др. Применение препаратов, приготовленных из представителей нормальной микрофлоры (колибактерин, бифидумбактерин, бификол) после приема антибиотиков, предупреждает развитие дисбактериоза.

Длительное лечение и применение антибиотиков может оказывать токсическое действие на организм больного: тетрациклины могут вызвать поражение печени, левомицетин - органов кроветворения, стрептомицин в ряде случаев поражает вестибулярный и слуховой анализаторы, цефалоспорины способны нарушать функции почек (нефротоксичность). Многие антибиотики часто вызывают гиповитаминоз и раздражение слизистой оболочки желудочно-кишечного тракта.

Антибиотики могут оказывать вредное действие на развитие плода, особенно у женщин, употреблявших антибиотики в первый период беременности. Прямое влияние на организм плода оказывают антибиотики группы тетрациклина.

Устойчивость микроорганизмов к антибиотикам . Часто при лечении антибиотиками происходит превращение чувствительных к антибиотику микроорганизмов в устойчивые (резистентные) формы. Приобретенная устойчивость бактерий к антибиотику передается по наследству новым популяциям бактериальных клеток.

Механизм образования устойчивости разнообразен (см. главу 10). В большинстве случаев резистентность связана со способностью бактерий синтезировать ферменты, разрушающие определенные антибиотические вещества. Например, устойчивость стафилококков к пенициллину объясняется их способностью вырабатывать фермент пенициллиназу, разрушающий антибиотик. В то же время для кишечной палочки, протея и других бактерий семейства кишечных пенициллиназа является конститутивным (постоянным) ферментом и определяет их естественную резистентность к пенициллину.

У некоторых бактерий обнаружена множественная лекарственная устойчивость, т. е. бактериальная клетка может обладать резистентностью к нескольким антибиотикам. Особенно выражена резистентность к пенициллину и стрептомицину, которые первыми стали использовать в клинической практике.

Эффективность антибиотикотерапии определяется главным образом степенью чувствительности бактерий к применяемому препарату. Поэтому проверяют чувствительность культур микроорганизмов, выделенных от больных, к различным антибиотикам, которые используют для лечения.

В процессе действия антибиотиков возможно изменение морфологических, культуральных, биологических свойств бактерий; могут образовываться L-формы (см. главу 3).

Антибиотики, выделенные из грибов . Из некоторых штаммов грибов рода Penicillium (Penicillium notatum, Penicillium chrysogenum) получен пенициллин.

Пенициллин - высокоактивен в отношении патогенных кокков: грамположительных стафилококков, стрептококков, пневмококков; грамотрицательных - менинго- и гонококков. Его используют для лечения сибирской язвы, столбняка, газовой гангрены, сифилиса и других заболеваний. Вводится пенициллин парентерально. Препарат нельзя применять перорально, так как он теряет свою активность в кислой и щелочной средах и разрушается в желудочно-кишечном тракте.

Уже в самом начале применения пенициллина было замечено, что он быстро выводится из организма, и для поддержания необходимой для терапевтического эффекта концентрации пенициллина в крови его вводят каждые 3-4 ч.

В дальнейшем были созданы препараты пенициллина, обладающие пролонгированным (продленным) действием. К ним относят экмоновоциллин, бициллин-1, бициллин-3, бициллин-5. Бициллин-1, 3, 5 - антибиотики, которые с успехом используются для лечения ревматизма и сифилиса.

В настоящее время получены полусинтетические пенициллины: метициллин, оксациллин, клоксациллин, которые не разрушаются пенициллиназой и применяются для лечения инфекций, вызванных устойчивыми к пенициллину стафилококками; ампициллин активен не только в отношении грамположительных, но и грамотрицательных бактерий (возбудителей брюшного тифа, дизентерии и др.). Оксациллин и ампициллин устойчивы к кислой среде желудка, что позволяет применять их перорально.

Грибами рода Cephalosporium продуцируется антибиотик цефалоспорин. Его полусинтетические производные, из которых наибольшее применение нашли цепорин (цефалоридин) и цефомезин, малотоксичны, обладают широким спектром действия, не разрушаются пенициллиназой, не дают аллергических реакций у лиц, чувствительных к пенициллину, и широко используются для лечения многих инфекционных болезней.

Антибиотики, образуемые актиномицетами . Впервые антагонистическое действие лучистых грибов (актиномицетов) установил Н. А. Красильников (1939). Из Actinomyces globisporus американским ученым А. Ваксманом (1943) был выделен стрептомицин. Открытие стрептомицина ознаменовало новую эпоху в борьбе с туберкулезом, так как к препарату оказались чувствительны микобактерии туберкулеза. Стрептомицин оказывает губительное действие на многие грамположительные и грамотрицательные бактерии и применяется для лечения чумы, туляремии, бруцеллеза и др. Вводится антибиотик парентерально.

Бактерии быстро приобретают устойчивость к стрептомицину. Некоторые микроорганизмы образуют стрептомицинозависимые формы, которые могут размножаться на питательных средах лишь при добавлении антибиотика.

Актиномицеты являются продуцентами природных антибиотиков группы тетрациклина (тетрациклин, хлортетрациклин, окситетрациклин). Все препараты обладают широким спектром действия, подавляют размножение многих видов грамположительных и грамотрицательных бактерий, риккетсий, некоторых простейших (дизентерийная амеба). Тетрациклин быстро всасывается из желудочно-кишечного тракта, его назначают с нистатином для профилактики кандидозов.

За последние годы широкое применение нашли полусинтетические производные окситетрациклина (метациклин, доксициклин и др.), которые оказались более эффективными по сравнению с природными препаратами.

Левомицетин - синтетический препарат, идентичный природному хлорамфениколу, выделенному из культуральной жидкости Streptomyces venezuelae. Антимикробный спектр левомицетина включает многие грамположительные и грамотрицательные бактерии, риккетсий, спирохеты. Наиболее часто левомицетин используется для лечения кишечных инфекций - брюшного тифа, паратифов, дизентерии, а также различных риккетсиозов - сыпного тифа и других заболеваний.

Из актиномицетов получены антибиотики: эритромицин, олеандомицин, канамицин, рифампицин, линкомицин и др. Эти препараты относят к антибиотикам "резерва" и применяют их для лечения заболеваний, вызванных бактериями, резистентными к другим антибиотикам.

Антибиотики, продуцируемые бактериями . Наибольшее практическое значение имеют полимиксины и грамицидин С.

Полимиксины объединяют группу родственных антибиотиков, продуцируемых спорообразующими почвенными бациллами - В. polimixa. Полимиксины В, М и Е активны в основном в отношении грамотрицательных бактерий (энтеробактерии, синегнойная палочка и др.).

Грамицидин С выделен советскими учеными Г. М. Гаузе и М. Г. Бражниковой (1942) из различных штаммов почвенных бацилл - B. brevis. К нему чувствительны грамполбжительные бактерии. Грамицидин С может вызывать гемолиз эритроцитов, поэтому применяется только местно для лечения нагноительных процессов.

Антибиотические вещества, полученные из высших растений . Советский исследователь Т. П. Токин (1928) обнаружил, что многие высшие растения образуют летучие вещества, обладающие антимикробным действием (фитонциды). Они защищают растения от болезнетворных микроорганизмов. Фитонциды - летучие эфирные масла, которые чрезвычайно нестойки, вследствие чего получать препараты фитонцидов в чистом виде очень сложно.

Фитонциды выделены из сока лука, чеснока, листьев эвкалипта и лишайника, травы зверобоя. Обнаружены они также в соке хрена, редиса, алоэ и других растений. Применение фитонцидов в медицинской практике ограничено, так как не удается получить хорошо очищенные, стойкие и малотоксичные препараты.

Антимикробные вещества, выделенные из тканей животных . Лизоцим был впервые обнаружен русским ученым Н. П. Лащенковым (1909) в белке куриного яйца. Позднее лизоцим выявили в молоке, слезной жидкости, слюне и тканях различных органов (почках, селезенке, печени); установили, что он как естественный защитный фактор организма оказывает бактериолитическое (растворяющее бактерий) действие на многие патогенные и сапрофитные микроорганизмы. Его используют для лечения глазных и кожных болезней.

Экмолин был выделен З. В. Ермольевой из тканей рыб. Применяется он в сочетании с пенициллином (экмоновоциллин), так как усиливает и продлевает его действие в организме.

Особый интерес представляет интерферон, образующийся в клетках организма под действием вирусов и являющийся фактором естественной защиты клетки от размножения вирусов. Интерферон, открытый Айзексом и Линдеманом (1957), обладает широким антивирусным спектром. Изучение механизма действия интерферона показало, что он препятствует синтезу нуклеиновых кислот многих вирусов и вызывает их гибель. Интерферону присуща видовая специфичность: человеческий интерферон не влияет на вирусы в организме животных.

Выделяют интерферон из лейкоцитов человека и обозначают его Иф-α. Применяют для профилактики и лечения гриппа и других вирусных респираторных заболеваний. В последние годы появились сообщения об эффективном действии интерферона при некоторых злокачественных новообразованиях.

Контрольные вопросы

1. Что представляют собой антибиотики?

2. Какое явление лежит в основе действия антибиотиков?

3. Каковы источники получения антибиотиков?

4. Как различаются антибиотики по механизму антимикробного действия?

5. Каков характер действия антибиотиков?

6. Что называют антимикробным спектром антибиотиков?

7. Какие возможны осложнения со стороны макроорганизма при антибиотикотерапии?

8. Какие свойства могут изменяться у микроорганизмов под влиянием антибиотиков?

Чувствительность микроорганизмов к антибиотикам - Н. А. Бельская

(Согласно Приказу Министерства здравоохранения СССР № 250 от 13.03.75 г. "Об унификации методов определения чувствительности микроорганизмов к химиотерапевтическим препаратам". )

В клинической практике чувствительными к антибиотикам считают те микроорганизмы, на которые антибиотики оказывают бактериостатическое или бактерицидное действие.

При любом лабораторном исследовании критерием чувствительности микроорганизмов к антибиотикам является минимальная концентрация антибиотика, ингибирующая (задерживающая) рост возбудителя заболевания при стандартных условиях постановки опыта.

Для определения лекарственной чувствительности оптимальным является использование чистой культуры возбудителя. Выделять культуры микробов из организма для исследования на чувствительность следует до начала лечения антибиотиками, так как под их воздействием рост возбудителя заболевания может быть полностью угнетен. Чувствительность микроорганизмов к антибиотикам определяют методом диффузии в агар с применением стандартных дисков или методом серийных разведений в жидких и плотных питательных средах.

Методы определения

Метод дисков. Взвесь изучаемой культуры засевают "газоном" (см. главу 7). В качестве посевного материала можно использовать суточную бульонную культуру или 1 миллиардную микробную взвесь, приготовленную по оптическому стандарту мутности № 10 (см. ниже). Засеянные чашки подсушивают 30-40 мин при комнатной температуре. Затем на поверхность засеянного агара пинцетом накладывают бумажные диски, пропитанные растворами различных антибиотиков. Каждый диск слегка прижимают браншами пинцета, чтобы он плотно прилегал к поверхности агара. Диски накладывают на равном расстоянии друг от друга и на расстоянии 2 см от края чашки. Одну чашку можно использовать для изучения чувствительности одного штамма к 4-5 антибиотикам.

Засеянные чашки с нанесенными на них дисками помещают в термостат при 37° С на 18-24 ч. Чашки ставят вверх дном, чтобы избежать попадания конденсационной воды на поверхность посевов.

Учет результатов. Действие антибиотиков оценивают по феномену задержки роста вокруг диска (рис. 25). Диаметр зон задержки роста микробов вокруг дисков определяют с помощью линейки, включая диаметр самого диска. Между степенью чувствительности микроба к антибиотикам и величиной зоны отсутствия роста имеются следующие соотношения (табл. 10).

В ответе указывают, какой чувствительностью обладает исследуемый штамм, а не размер зоны задержки роста.

В ряде случаев определяют чувствительность микроорганизмов к антибиотикам в нативном материале (гной, раневое отделяемое и др.). При этом материал наносят на поверхность питательного агара и равномерно растирают по поверхности стерильным стеклянным шпателем * , а потом накладывают диски. Метод дисков для определения чувствительности микроорганизмов вследствие простоты и доступности широко применяют в практических лабораториях и расценивают как качественный метод.

* (Для тех видов микроорганизмов, которые не растут на мясопептонном агаре, как, например, стрептококки, пневмококки и другие, применяют агар с кровью или сывороткой. )

Метод серийных разведений в жидкой питательной среде . Этот метод является точным количественным методом, его применяют в научной работе и в особо важных случаях в лабораториях больниц и профилактических учреждений.

Для постановки опыта необходимо иметь чистую культуру испытуемого микроорганизма, основной раствор антибиотика, мясопептонный бульон на переваре Хоттингера, содержащий 1,2-1,4 г/л аминного азота.

Активность антибиотиков выражают в ЕД/мл или мкг/мл. Для приготовления основного раствора антибиотика используют антибиотики, имеющиеся в продаже с указанием количества их во флаконе.

Если на этикетке вместо количества единиц во флаконе дозировка указана в единицах массы, то следует иметь в виду, что 1 г активности для большей части антибиотиков соответствует 1 млн. ЕД. Из этого раствора и должны быть приготовлены требуемые разведения антибиотиков. Указания для приготовления основного раствора антибиотиков на примере пенициллина приведены в табл. 11.

Готовят взвесь культуры микроорганизмов, выросшей на плотной питательной среде. Полученную взвесь сравнивают с оптическим стандартом мутности № 10 (см. ниже), а затем разводят стерильным изотоническим раствором натрия хлорида до 10 6 микробных тел в 1 мл. Для получения соответствующего разведения микробной взвеси готовят ряд последовательных десятикратных разведений (см. ниже).

Постановка опыта. В 12 стерильных пробирок разливают по 1 мл жидкой питательной среды. В 1-ю пробирку вносят 1 мл основного раствора антибиотика, содержащего, например, 32 ЕД в 1 мл. Содержимое 1-й пробирки перемешивают и 1 мл переносят во 2-ю пробирку, из 2-й - в 3-ю, из 3-й - в 4-ю и так до 10-й, из которой 1 мл удаляют. Таким образом, 1-я пробирка будет содержать 16 ЕД, 2-я - 8 ЕД, 3-я - 4 ЕД и т. д. Для приготовления каждого разведения используют отдельную пипетку. Содержимое 11-й пробирки служит контролем роста бактерий, а 12-й - контролем стерильности питательной среды. Во все пробирки, кроме 12-й, вносят 0,1 мл испытуемой культуры определенной густоты. Посев инкубируют в термостате в течение 18-24 ч и регистрируют результаты опыта.

Учет результатов проводят при наличии роста в контроле культуры и отсутствии роста в контроле среды. Затем отмечают последнюю пробирку с полной видимой задержкой роста микробов. Количество антибиотика в этой пробирке является минимальной ингибирующей концентрацией для испытуемого штамма и определяет степень его чувствительности к данному антибиотику. В ответе, выдаваемом лабораторией, указывают минимальную ингибирующую концентрацию.

Метод серийных разведений на плотной питательной среде . Готовят двукратные разведения антибиотика, как и при методе серийных разведений в жидкой питательной среде. Затем берут 1 часть каждого разведения антибиотика и 9 частей питательного агара, расплавленного и охлажденного до 42° С (из расчета 1 мл антибиотика + 9 мл МПА), хорошо перемешивают и наливают в чашки Петри.

Густоту (концентрацию) культуры определяют по оптическому стандарту мутности № 10 и разводят стерильным изотоническим раствором до 10 7 микробных тел в 1 мл. Бактериальной петлей наносят испытуемые культуры на поверхность питательного агара с антибиотиком. На одну чашку делают посев 20-25 штаммов. Засеянные чашки ставят в термостат при 37° С на 16-20 ч для большинства видов микроорганизмов. Чашка с питательным агаром без антибиотика, на которую наносят испытуемые культуры, является контрольной.

Учет результатов проводят при наличии роста в контрольной чашке, а минимальную ингибирующую концентрацию антибиотика определяют по последней чашке Петри, где отмечают полную задержку роста бактерий.

Метод дорожки по Флемингу . Метод применяют для определения спектра действия антибиотика. В чашке Петри с МПА стерильным скальпелем вырезают дорожку шириной 1 см и удаляют ее. Затем в пробирку с растопленным и охлажденным до 42-45° С мясопептонным агаром вносят определенную концентрацию раствора антибиотика. Содержимое пробирки перемешивают и выливают в дорожку так, чтобы жидкость не выходила за ее пределы. После застывания агара перпендикулярно к дорожке засевают петлей культуры нескольких исследуемых микроорганизмов. Посевы помещают в термостат на 18-24 ч.

Учет результатов. Чувствительные к препарату культуры начинают расти лишь на некотором расстоянии от дорожки, нечувствительные растут до самого края.

Методика работы с оптическим стандартом мутности

Для определения количества микробных тел в 1 мл используют оптические стандарты мутности. Их изготовляет Государственный НИИ стандартизации и контроля медицинских биологических препаратов МЗ СССР им. Л. А. Тарасевича (ГИСК). Существуют следующие стандарты мутности:

0,5 млрд. микробов в 1 мл - № 5 (5 ед. мутности) 0,9 " " " 1 " - № 9 (9 " ") 1 " " " 1 " - № 10 (10 " ") 1,1 " " " 1 " - № 11 (11 " ")

Перед определением количества микробных тел в 1 мл сначала получают микробную взвесь. Для этого в пробирку с выросшей на скошенном агаре культурой наливают 5-6 мл изотонического раствора натрия хлорида и, вращая пробирку между ладонями, смывают культуру с поверхности среды. Часть полученной взвеси переносят стерильной пипеткой в стерильную пробирку, толщина стенки и диаметр которой соответствует пробирке оптического стандарта. Затем сравнивают густоту полученной микробной взвеси с одним из оптических стандартов мутности. В случае необходимости микробную взвесь разводят, прибавляя изотонический раствор натрия хлорида до нужной мутности. Если мутность полученной микробной взвеси совпадает с мутностью оптического стандарта, то количество микробных тел в ней соответствует номеру стандарта.

Контрольные вопросы

1. Что является критерием чувствительности микроорганизмов к антибиотикам при лабораторном исследовании?

2. Когда следует выделять культуры микроорганизмов из организма больных для определения чувствительности к антибиотикам?

3. Какие существуют методы определения чувствительности микроорганизмов к антибиотикам?

Задание

1. Возьмите у преподавателя флакон с пенициллином, содержащий в 1 мл 300000 ЕД, и приготовьте основной раствор антибиотика в 32 ЕД/мл.

2. Определите чувствительность микроорганизмов к антибиотикам методом бумажных дисков, учтите результаты и дайте ответ.

3. Определите чувствительность выделенной культуры стафилококков к пенициллину методом серийных разведений в жидкой питательной среде, учтите результаты и дайте ответ.

Химиопрофилактика и химиотерапия

В медицинской практике для предупреждения и лечения инфекционных болезней давно применяли химические вещества. Индейцы для борьбы с малярией употребляли кору хинного дерева, а в Европе уже в XVI веке применяли ртуть для лечения сифилиса. Химиотерапия - это применение для лечения заболевания химических веществ, обладающих специфическим действием на клетки возбудителя заболевания и не повреждающих клетки и ткани человека. Основы научной химиотерапии были сформулированы П. Эрлихом. Он получил первые химиотерапевтические препараты - сальварсан и неосальварсан, содержащие мышьяк. В течение нескольких десятилетий их использовали при лечении сифилиса.

Химиопрофилактика - применение химических препаратов для предупреждения инфекционных заболеваний.

В основе действия химиотерапевтических препаратов на клетки возбудителей заболеваний лежит сходство их молекул с рядом веществ, необходимых для метаболизма микроорганизмов: аминокислот, витаминов, ферментов и т. д. Препарат всасывается бактериальной клеткой вместо необходимого ей компонента и начинает свое разрушительное действие. В результате нарушения важнейших систем клетки она погибает (бактерицидное действие), а если нарушения слабые, то отмечается бактериостатическое действие.

Важным этапом в развитии химиотерапии явилось создание сульфаниламидных препаратов (стрептоцид, норсульфазол, сульфадимезин и др.). Они дают хороший лечебный эффект при ангине, гнойно-воспалительных инфекциях, кишечных заболеваниях. В борьбе с туберкулезом помогли синтетические химиотерапевтические препараты ПАСК (парааминосалициловая кислота), тибон, фтивазид и др. В настоящее время разрабатывают и применяют химические противовирусные и противоопухолевые препараты. Большое значение имеют антибиотики - химиотерапевтические препараты биологического происхождения.

Однако химиотерапевтические препараты обладают рядом отрицательных свойств. Воздействуя на определенную цепь обмена веществ, они могут наряду с клеткой возбудителя поражать и клетки человека. В результате лечения химиопрепаратами в организме человека накапливается большое количество промежуточных продуктов, обладающих побочным действием. Описаны случаи изменения состава крови, мутации клеток и другие функциональные нарушения организма человека в результате применения химиотерапевтических препаратов.

Запись к врачу-стоматологу в Нижнем Новгороде через интернет на

Топ-10 самых полезных грибов от журнала «сайт»

Польза грибов для человеческого организма несомненна. Исстари народные знахари лечили лесными дарами разные хвори: экстракт белого гриба использовали при обморожениях, настоем из лисичек боролись с фурункулами, сморчками успокаивали нервы, с помощью маслят избавлялись от головных болей.

Основные полезные свойства грибов

  1. Грибы – это прекрасный источник белка. Некоторые разновидности по своей питательности не уступают говядине. Всего 150 г сушеных грибов способны обеспечить организм суточной потребностью в мясе;
  2. Грибы – это низкокалорийный продукт, что на 90% состоит из воды, практически не содержит крахмала, натрия и холестерина, помогает организму избавиться от лишней жидкости (благодаря наличию калия), налаживает обмен веществ, а все это способствует похудению;
  3. Чудодейственные шляпки играют важную роль в укреплении иммунитета. При регулярном употреблении грибы предупреждают онкологические и сердечно-сосудистые заболевания. Антиоксидант селен, источником которого они являются, встречается только в некоторых овощах и фруктах;
  4. Благодаря обилию цинка и витаминов группы В грибы полезны для нервной системы, они предупреждают эмоциональные расстройства, помогают избежать умственного истощения;
  5. Наличие витамина D делает грибы полезными для здоровья кожи, костей, зубов, ногтей и волос.

Наиболее ценными по своим питательным и целебным качествам считаются белые грибы, подберезовики, подосиновики, волнушки, маслята, грузди, лисички, опята, рыжики и даже вездесущие сыроежки.

ТОП-10 самых полезных грибов

1. Белые грибы (боровики)
Белые грибы – ценный источник белков, ферментов и пищевых волокон. Сера и полисахариды в их составе способны оказать существенную поддержку в борьбе с онкологическими заболеваниями, лецитин и алкалоид герцедин очень важны для здоровья сердечно-сосудистой системы, рибофлавин отвечает за рост волос, ногтей, обновление кожи, правильную работу щитовидной железы и здоровье организма в целом. Из всех грибов именно в боровиках обнаружен наиболее полный набор аминокислот, в том числе и незаменимых. Богат и витаминно-минеральный состав этих благородных грибов. В них содержится калий, магний, фосфор, железо, кальций, марганец, цинк, токоферол, ниацин, тиамин, фолиевая и аскорбиновая кислота. Боровики обладают ранозаживляющими, иммуномодулирующими и противоопухолевыми свойствами.

2. Подосиновики (красные грибы)
По своим питательным и вкусовым качествам подосиновики практически не уступают боровикам. В этих грибах много калия, фосфора, железа, витаминов А и С, есть клетчатка, лецитин, ферменты и жирные кислоты. По содержанию никотиновой кислоты они не уступают печени, а по концентрации витаминов группы В близки к зерновым культурам. Белков в подосиновиках больше, чем в мясе. Ценные аминокислоты, источником которых они являются, особенно важны для людей, чей организм ослаблен перенесенными операциями, инфекционными заболеваниями, разного рода воспалительными процессами. Сухой порошок из красных грибов принимают для очищения крови и снижения уровня холестерина.


Эти грибы на Руси собирали с древнейших времен. Если боровику гурманы присвоили титул «царя грибов», то рыжика величают «великим князем». И крестьяне, и цари ценили эти грибы за оригинальный вкус и чудесный аромат. Многогранны и его полезные свойства. По усвояемости организмом человека рыжики относятся к наиболее ценным грибам. Они богаты каротиноидами, ценными аминокислотами, железом, содержат клетчатку, витамины группы В (рибофлавин, тиамин и ниацин), аскорбиновую кислоту и ценный антибиотик лакториовиолин, что губительно действует на рост множества бактерий. Пользу рыжиков для здоровья объясняет также изобилие в них минеральных солей – калия, натрия, фосфора, магния, кальция. Рыжиками лечат заболевания, вызванные нарушением обмена веществ, ревматизм, витилиго, болезни легких.


На Руси грузди считались самыми лучшими грибами на протяжении столетий. Ценность этих лесных даров в том, что они являются одним из немногих источников витамина D не животного происхождения. Моченые грузди народная медицина признала одним из лучших средств для профилактики мочекаменной болезни: биоактивные вещества, что содержатся в этих грибах, препятствуют образованию в почках аксалатов и уратов. Грузди являются источником витаминов С, РР и группы В, обеспечивают организм полезными бактериями, содержат натуральные антибиотики, что укрепляют слизистые оболочки органов дыхания и подавляют размножение туберкулезной палочки. Препараты из груздей используют для лечения желчнокаменной болезни, почечной недостаточности, эмфиземы легких и заболеваний желудка.


Эти скромные грибы с желтыми, серыми, зелеными, розово-красными, фиолетовыми и коричневыми шляпками любят за приятный вкус и многогранные полезные свойства. В сыроежках в изобилии содержатся жирные кислоты, пищевые волокна, всевозможные моно- и дисахариды, витамины РР, С, Е, В1 и В2, из минералов в них больше всего магния, кальция, фосфора и железа. Большое значение для здоровья в составе этих грибов имеет вещество лецитин, что чистит сосуды, препятствует накоплению холестерина в организме, помогает при нарушениях обмена веществ. Некоторые виды сыроежек обладают антибактериальным действием, способствуют очищению желудка и кишечника. Найденный в сыроежках фермент руссулин очень востребован в сыроделии: на створаживание 200 л молока требуется всего 1 г этого вещества.


Любители грибных блюд знают, что замечательный вкус – не единственное достоинство подберезовиков, велика и польза этих грибов для здоровья. Особенно ценятся подберезовики за содержание прекрасно сбалансированного белка, включающего аргинин, тирозин, лейцин и глутамин. Богат и витаминный состав этих грибов, он включает аскорбиновую и никотиновую кислоту, токоферол, витамины группы В и витамин D. Способность подберезовиков выводить из организма токсины обеспечивается наличием пищевых волокон, а ценность этого продукта для здоровья опорно-двигательного аппарата обусловлена содержанием большого количества фосфорной кислоты, участвующей в строительстве ферментов. Подберезовики используют для регулирования сахара в крови, лечения почечных патологий и разладов в работе нервной системы.


Опенки богаты витаминами С и В1, в разных видах этих грибов присутствуют природные антибиотики, противораковые вещества, токоферол и никотиновая кислота, калий, натрий, магний и железо. Осенние опята применяются как слабительное средство, а луговые опенки положительно влияют на работу щитовидной железы и губительно действуют на кишечную палочку и золотистый стафилококк. Опята особенно полезны для людей, у которых есть проблемы с кроветворением, для болеющих ишемической болезнью сердца и сахарным диабетом. 100 г этих грибов способны восполнить суточную потребность организма в меде и цинке. По содержанию фосфора и кальция опенки близки к рыбе, а белок, который в них содержится, обладает противоопухолевой активностью.


По своему полезному составу вешенки близки к мясу: в этих грибах содержатся витамины группы B, аскорбиновая кислота, токоферол, а также довольно редкий витамин D2, участвующий во всасывании кальция и фосфора в кишечнике, а содержанию никотиновой кислоты (особенно важного витамина для кормящих матерей) вешенка считается самым ценным грибом. На 8% вешенки состоят из минеральных веществ, всего 100 г продукта способны восполнить суточную потребность организма в калии. Эти грибы обладают бактерицидными свойствами, помогают вывести радиоактивные вещества из организма, укрепляют сосуды, регулируют давление, снижают содержание плохого холестерина в крови. А недавно ученые обнаружили еще одно любопытное свойство этих грибов – способность повышать мужскую потенцию.


Любители грибов знают, что нежный ореховый вкус – не единственное достоинство блюд из лисичек. Польза этих грибов проявляется в иммуностимулирующем и противоопухолевом действии, благотворном влиянии на состояние слизистых оболочек, улучшении зрения, способности выводить из организма радионуклиды и восстанавливать поврежденные клетки поджелудочной железы. Лисички богаты медью, цинком, витаминами D, А, РР и группы В, являются источником ценных аминокислот, а по содержанию бета-каротина превосходят морковь. Природные антибиотики, найденные в этих грибах, губительны для стафилококков и туберкулезной палочки. Вытяжками из лисичек лечат заболевания печени. Если эти грибы правильно приготовить, они способны помочь в лечении ожирения (спровоцированного неправильной работой печени).


Эти замечательные грибы являются источником лецитина, органических кислот, минеральных веществ и ценных белков. Из витаминов в шампиньонах присутствуют токоферол, витамин D, никотиновая и фолиевая кислота. По содержанию фосфора шампиньоны могут соперничать с рыбой, а витаминов группы B в этих грибах больше, чем в свежих овощах. Полезные вещества, что содержатся в шампиньонах, помогают бороться с усталостью, регулируют мыслительную деятельность, поддерживают в хорошем состоянии кожу, активизируют иммунитет, благотворно влияют на нервные клетки, систему кровообращения и состояние слизистых оболочек. Шампиньоны обладают противоопухолевой и антибактериальной активностью, помогают организму расстаться со шлаками, излишками холестерина и тяжелыми металлами.

Калорийность грибов

Все грибы относятся к безопасным для фигуры продуктам. Самую низкую калорийность имеют сыроежки – 15 ккал на 100 г. В рыжиках содержится 17 ккал на 100 г, в лисичках и груздях – 19 ккал, в подберезовиках – 20 ккал, в опятах и подосиновиках – 22 ккал, в шампиньонах – 27 ккал, в белых грибах – 30 ккал, в вешенках – 38 ккал на 100 г.

Вред грибов

Поскольку грибы являются трудно перевариваемым продуктом, налегать на них не стоит при острых воспалительных процессах пищеварительной системы (панкреатитах, язвах, гастритах, проблемах с печенью). Маринованных и соленых грибов не рекомендуется съедать более 100 г в день. Любыми грибами не рекомендуется кормить детей, у малышей отсутствуют ферменты, необходимые для их расщепления. Крайне не рекомендуется собирать старые грибы. Не принесут пользу и дары леса, собранные в промышленных районах, вблизи оживленных автострад, военных полигонов, химических производств.


За чудесные гастрономические качества, обилие витаминов, многогранные полезные свойства грибы любят в разных странах, готовят из них разнообразные блюда, делают лекарственные препараты. Лесные дары таят в себе еще много загадок. Одно не вызывает сомнений – это польза грибов для здоровья. Главное, в них разбираться, собирать в экологически чистых районах или покупать в проверенных местах.

Чайный гриб - это симбиоз различных бактерий и дрожжей, возникший в естественных условиях. Помимо приятного вкуса и ряда полезных свойств, культуральная жидкость чайного гриба является мощнейшим антибиотиком.

История чайного гриба берёт своё начало с давних времён. Первые упоминания об использовании этого уникального напитка относятся к 220 г. до н.э., к временам династии Цзин в Древнем Китае, где он назывался «Комбуха». Термин «комбуча» до сих пор используется для названия чайного гриба в различных культурах.
Чайный гриб представляет собой плавающий кусок волокнистых нитей целлюлозы и колоний полезных микроорганизмов. Чайный гриб, как правило, содержит множество штаммов полезных дрожжей, которые превращают сахар в спирт. Одна из самых распространённых полезных бактерий в структуре чайного гриба - Gluconacetobacter xylinus - главный производитель микробиологической целлюлозы. Этот микроорганизм превращает этанол в уксусную кислоту, что снижает содержание алкоголя в чайном грибе и увеличивает пробиотические продукты.
Кислая среда чайного гриба предотвращает заражение плесенью и болезнетворными бактериями. Кроме того, чайный гриб производит множество веществ:
органические кислоты (уксусная, глюконовая, щавелевая, лимонная, яблочная, молочная, койевая);
спирт этиловый;
витамины (аскорбиновая кислота, тиамин, витамин D);
ферменты (каталаза, липаза, протеаза, карбогидраза, зимаза, левансахараза);
липиды (стерины, фоефатиды, жирные кислоты);
сахара (моносахариды, диеахариды);
пигменты (хлорофилл, ксантофилл);
пуриновые основания из чайного листа;
смолы и таннины из чайного листа;
антибиотические вещества;
Отдельного разговора заслуживают антибактериальные эффекты чайного гриба.
Согласно исследованию, проведённому на кафедре микробиологии Ереванского зооветеринарного института доцентом Л.Т. Даниелян и профессором Г.А. Шакаряном в 1946-1947 гг., чайный гриб обладает антибактериальной активностью с широким спектром действия. По мнению учёных, антибактериальная активность культуральной жидкости чайного гриба обусловлена в основном наличием в ней биологически активных веществ.
Чайный гриб эффективен против ряда грамположительных и грамотрицательных бактерий. Большинство неспорогенных бактерий погибало в растворе чайного гриба в течение промежутка времени от 10 мин до 2 часов.
Споры бактерий и плесневых грибов, как правило, проявляли значительную устойчивость, но все же погибали при экспозиции от 1 до 4 суток. К таковым относились споры возбудителей сибирской язвы, почвенные спороносные бактерии, а из плесневых грибов - грибы рода Penicillium, Aspergillus, сем.
Mukor, которые проявляют чувствительность в анаэробных условиях. Наиболее чувствительными к действию чайного гриба оказались стрептококки, которые погибали через 1 час при экспозиции неразведённого чайного гриба.
Другими словами, жидкость чайного гриба может стать средством для домашней аптечки от инфекционных заболеваний, вызванных различными патогенными микроорганизмами. А для профилактики достаточно просто пить напиток ежедневно.

Как вырастить чайный гриб с нуля…

Выращивание гриба из черного чая
Если чайный гриб нужен вам лишь только для вкусного напитка, обладающего общеукрепляющими действием, можно вырастить чайный гриб только из черного чая. Вам понадобится трехлитровая банка, марлевая ткань, заварочный чайник, кипяток, сахар и крупнолистовая заварка черного чая. Причем заварка должна быть самой обычно, без каких-либо добавок – чем дешевле, тем лучше.
Первое, что необходимо сделать – это очень тщательно помыть трехлитровую банку, которая и станет местом жительства вашего гриба. Это – обязательное требование, так как чайный гриб очень любит чистоту. А в противном случае он погибнет, так и не успев вырасти. И еще один очень важный момент: ни в коем случае не используйте для мытья банки синтетические моющие средства – достаточно обычной пищевой соды.
В заварочный чайник поместите пять столовых ложек черного чая и залейте их половиной литра крутого кипятка, оставьте, пока заварка полностью не остынет. Затем добавьте в заварку 7 столовых ложек сахара, тщательно помешайте и процедите при помощи марлевой ткани. Перелейте сладкую крепкую заварку в трехлитровую банку, сверху накройте ее марлевой тканью и поставьте в теплое место примерно на полтора месяца.
Где-то через неделю-полторы появится сильный уксусный запах – это совершенно нормально, придется немного потерпеть. Через 5-6 дней запах практически исчезнет, а на поверхности жидкости образуется тоненькая пленочка – это и есть чайный гриб. С каждым днем он будет все толще и толще – рост гриба не прекращается всю его жизнь. Выращивание гриба из плодов шиповника
Если задача вашего чайного гриба – не только удаление жажды, но и забота о вашем здоровье, лучше всего отдать предпочтение выращиванию из плодов шиповника. Такой чайный гриб – настоящая находка в холодное время года, в сезон гриппа и простуд, а также весной, когда активизируется авитаминоз. Принцип выращивания тот же, что и из простой заварки, но есть свои нюансы, о которых мы сейчас и поговорим.
Для начала вам необходимо приготовить настой шиповника. Для этого можно использовать как свежие, так и сушеные плоды, которые продаются в любой аптеке. Поместите в термос четыре столовых ложки подов шиповника, залейте половиной литра крутого кипятка и накройте крышкой, оставьте на пять суток.
После того как настой шиповника будет готов, можно приступать непосредственно к выращиванию гриба. Вымойте трехлитровую банку, перелейте туда настой шиповника и заранее приготовленную заварку – из расчета столовая ложка крупнолистового черного чая на стакан кипятка. Добавьте 5 столовых ложек сахара и тщательно перемешайте, оставьте на сутки.
После процедите при помощи марлевой ткани, ополосните банку и снова перелете настой в банку. Накройте банку марлевой тканью, предварительно сложенной в несколько слоев и поставьте в теплое темное место. Далее процесс будет развиваться по стандартной схеме – примерно через две недели появится сильный уксусный запах, который вскоре исчезнет. А сам гриб образуется через полтора-два месяца.
Уход за чайным грибом
Выращивание чайного гриба в домашних условиях с нуля – это еще половина дела. Вторая не менее важная половина – правильный уход за грибом. В противном случае вы рискуете получить не вкусный напиток, а нечто, напоминающее уксус. А то и того хуже – выращенный с такой заботой чайный гриб просто погибнет.
Кстати говоря, существует прекрасный индикатор здоровья чайного гриба – он всегда должен находиться на поверхности воды. Если ваш гриб опустился на дно, либо после доливки заварки отказывается снова всплывать – очень высока вероятность, что он заболел. Если чайный гриб заболел, вы допустили оплошность в уходе. А значит, его необходимо лечить, причем во всех случаях без исключения лечение одно – чистота и правильный уход.
Объем жидкости
Как вы помните, изначально в банке находится небольшое количество жидкости – примерно 0,5 литра. Но когда гриб уже подрос, жидкости должно быть гораздо больше – около трех литров. Само собой разумеется, что чайный гриб у вас не предмет декорации и вы будете его пить. А значит, не забудьте регулярно доливать жидкость.
Для этого можно использовать уже спитую заварку – залейте ее кипятком, остудите и добавьте сахар, после чего перелейте в банку. Сахара должно быть не очень много – не больше двух столовых ложек на литр жидкости. При необходимости лучше добавить сахар в чашку с напитком.
Очень многие люди не процеживают заварку – добавляют ее просто так. Для гриба никакого вреда в этом нет, просто вам потом будет не очень удобно пить напиток. Но вреда не будет только в том случае, если весь сахар полностью растворится – крупинки сахара ни в коем случае не должны контактировать с поверхностью гриба.
Банный день
Один раз в две-три недели обязательно устраивайте чайному грибу банный день. Сам гриб очень аккуратно извлеките из банки, положите на широкую тарелку, стараясь сильно не деформировать. Жидкость, в которой находился гриб, тщательно процедите при помощи марлевой ткани и перелейте в чистую трехлитровую банку.
Тарелку с грибом поставьте в раковину и аккуратно промойте теплой (но не горячей) водой, оставьте на воздухе на пару минут.
Затем также осторожно переложите чайный гриб в банку и накройте марлевой тканью. Все, «головомойка” чайного гриба на этом окончена. Казалось бы, совершенно простая процедура, сделать которую очень просто, а именно благодаря ей ваш чайный гриб будет здоров.
В противном случае гриб начнет болеть – сначала он приобретет бурый оттенок, а потом и вовсе расслаиваться начнет. Спасти такой гриб очень сложно, а в большинстве случаев проще вырастить новый. А напиток из такого чайного гриба пить вообще не рекомендуется, потому что он не только теряет свою пользу, но и более того – становится опасным для здоровья. Помните о том, что настой чайного гриба всегда должен быть исключительно прозрачным.
Хранение чайного гриба
Еще одно необходимое условие здоровья чайного гриба – его правильное хранение. Во-первых, температура – достаточно высокой она должна быть только при выращивании чайного гриба. Потом же оптимальная температура не должна превышать 18 градусов. Во-вторых – освещенность. Для нормальной жизнедеятельности чайного гриба свет просто необходим, причем световой день должен быть не меньше 8 часов. Но прямых солнечных лучей необходимо избегать, поэтому не повторяйте очень распространенной ошибки – не помещайте банку с чайным грибом на подоконник.
Польза чайного гриба
Нельзя хотя бы вкратце не упомянуть о полезных свойствах чайного гриба – ведь не зря же, в конце концов, вы возитесь с ним?
Обмен веществ и иммунная система
Первое, о чем стоит сказать -это о витаминах. В напитке из чайного гриба находится гораздо больше полезных веществ, чем в самом дорогостоящем витаминно-минеральном комплексе. Витамины, минералы, угольная, молочная и прочие кислоты, минералы, ферменты – это далеко не полный перечень. Поэтому нет ничего удивительного в том, что напиток из чайного гриба самым положительным образом влияет на работу иммунной системы и нормализует обмен веществ.
Пищеварительный тракт
Вас мучают гастриты, колиты, язвенная болезнь желудка и двенадцатиперстной кишки, дисбактериоз? Всего один стакан напитка из чайного гриба, выпитый натощак способен улучшить ситуацию всего через неделю. А регулярное его употребление способствует полному излечению. Кстати говоря, напиток очень хорошо устраняет даже самую сильную изжогу.
Как видите, в выращивании и уходе за чайным грибом нет ничего сложного. Поэтому если вы задались целью самому вырастить этот чудо-гриб – дерзайте, ведь польза очевидна!

Антибиотики, образуемые грибами

Большая группа мицелиальных грибов образуют более 1200 разнообразных антибиотических средств, отдельные представители которых широко используются в качестве химиотерапевтических средств. Основная часть антибиотиков, полученных с помощью этой группы продуцентов из-за высокой токсичности еще не нашла практического применения. Наибольший интерес представляют: пенициллин, цефалоспорин, гризеофульвин, трихотецин, фумагиллин и другие, используемые в медицине и сельском хозяйстве.

Пенициллины могут образовываться определенными видами Penicillium (P.chrysogenium, P.brevicompactum, P.nigricans, P.turbatum, P.steckii, P.corylophilum), некоторыми видами Aspergillus (Asp.flavus, Asp.flavipes, Asp.janus, Asp.nidulans и др.). Имеются сведения, что пенициллин образуется даже термофильным организмом Malbranchia pulchella. Основным организмом, используемым для получения антибиотика, является P. chrysogenium, который в процессе жизнедеятельности образует различные формы пенициллинов, отличающихся строением молекул. Молекула пенициллина - это бициклическая структура, состоящая из b-лактамного и тиазолидинового колец, соединенная с определенной для каждого типа пенициллина боковой цепью. В результате биологического синтеза образуются: бензилпенициллин, оксибензилпенициллин, пентенилпенициллин, гептилпенициллин. К синтетическим пенициллинам относят: ампициллин, оксациллин, диклоксациллин, нафциллин, метициллин и карбенициллин.

Цефалоспорины . Их также относят к b-лактамным антибиотикам. Основной продуцент препарата Cephalosporium acremonium. Цефалоспорин по биологическим свойствам отличается от пенициллина. Несмотря на то, что он подавляет рост грамположительных и грамотрицательных бактерий, однако, антибиотическая активность ниже, чем у пенициллина. Цефалоспорин, как и пенициллин, содержит b-лактамное кольцо, но не инактивируется пенициллиназой. Помимо b-лактамного кольца у цефалоспоринов имеется дигидротиазиновое и две боковые цепи: С-7 и С-3. Близкий к цефалоспорину С антибиотик цефамицин С образует актиномицет Str.clavuligereus.

Большой практический интерес представляют химические модификации цефалоспоринов: цефапарол, цефатризин, цефамандол, цефакситин.

Фумагиллин , синтезируемый Aspergillus fumigatus, относится к группе полиеновых соединений, отличием которых является присутствие системы двойных связей (-СН=СН-СН=СН-СН=СН-СН=). Особенностью этого препарата является способность подавлять развитие бактериофагов, стафилококков, Entamoeba histolitica, Nosema apis, Plasmodium gallinaceum, но индифферентен в отношении палочковидных форм бактерий, грибов. Используется в медицине и ветеринарии.

Гризеофульвин - кислородсодержащее гетероциклическое соединение, синтезируемое некоторыми видами плесневых грибов: Penicillium nigricans, P.urticae (син. P.patulum), P.griseofulvum. Особенность этого препарата в том, что его формула содержит неионный связанный хлор. Кроме гризеофульвина к таким соединениям можно отнести хлорамфеникол, хлортетрациклин, эрдин, геодин, калдариомицин и ряд других. Обладает высокой фунгицидностью, малой токсичностью в отношении макроорганизма. Препарат используют для лечения стригущего лишая, возбудитель которого - Trichophyton rubrum, он эффективен для борьбы с мучнистой росой клубники, огурцов и др.